Enhancing and Re-Purposing TV Content for Trans-Vector Engagement (ReTV)
H2020 Research and Innovation Action - Grant Agreement No. 780656

'RelV

Enhancing and Re-Purposing TV Content
for Trans-Vector Engagement

- -
-

(
]
1
iy
'y
A
'y

W

T ITCTCT S <Y
- RN
- R

Deliverable 3.3 (M34)
Content Adaptation, Re-Purposing and

Scheduling
Final Version

This document was produced in the context of the ReTV project supported by the European
Commission under the H2020-ICT-2016-2017 Information & Communication Technologies
Call Grant Agreement No 780656

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

DOCUMENT INFORMATION

Delivery Type
Deliverable Number
Deliverable Title
Due Date

Submission Date

Work Package

Partners

Author(s)

Reviewer(s)

Keywords

Dissemination Level

Project Coordinator

Contact Details

Report

3.3

Content Adaptation, Re-purposing and Scheduling
M34

October 30, 2020

WP3

GENISTAT, CERTH, MODUL TECHNOLOGY,
WEBLYZARD

Basil Philipp, Krzysztof Ciesielski (GENISTAT),
Konstantinos Apostolidis, Evlampios Apostolidis,
Damianos Galanopoulos, Eleni Adamantidou,
Alexandros Metsai, Vasileios Mezaris (CERTH), Lyndon
Nixon (MODUL), Arno Scharl (WEBLYZARD)

Rasa Bocyte (NISV)

Content Adaptation, Content Re-purposing, Video
Summarization, Content Scheduling, Text to Video,
Text Summarization

PU

MODUL Technology GmbH
Am Kahlenberg 1, 1190 Vienna, Austria

Coordinator: Dr Lyndon Nixon (nixon@modultech.eu)
R&D Manager: Prof Dr Arno Scharl
(scharl@weblyzard.com)

Innovation Manager: Bea Knecht (bea@zattoo.com)

Page 2 of

mailto:nixon@modultech.eu
mailto:scharl@weblyzard.com
mailto:nixon@modultech.eu

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

Revisions
Version Date Author Changes
Basil Philipp,
Konstantinos iy
0.1 2020-05-06 - Initial structure
Apostolidis,
Vasileios Mezaris
Evlampios
0.2 2020-06-06 APOStO“dIS.’ Eleni Added text on Video Summarization
Adamantidou,
Alexandros Metsai
0.3 2020-06-05 Krzysztof Ciesielski | Initial text on recommendation and scheduling
0.4 2020-06-11 Basil Philipp Extended sections on re'commendation and
scheduling
0.5 2020-06-12 Damianos Added text to Text to Video Matching section
Galanopoulos
0.6 2020-06-12 Konstantinos Reviewed CERTH's inputs
Apostolidis
0.7 2020-06-15 Krzysztof Ciesielski Reviewed inputs
0.8 2020-06-16 Arno Scharl Storypact section and restructuring
. s Reviewed section 3 and added the
0.9 2020-06-16 Basil Philipp Introduction and Conclusion
0.10 2020-06-17 Vasileios Mezaris Reviewed CERTH's inputs
0.11 2020-06-17 Basil Philipp Minor restructuring of Section 3
0.12 2020-06-26 Rasa Bocyte Review
0.13 2020-10-11 Krzysztof Ciesielski Extend sections on recommendation
0.14 2020-10-16 Basil Philipp Restructuring of Section 3
0.15 2020-10-17 Arno Scharl Text summarization and editor mode revision
Konstantinos
Apostolidis, Added text to Smart Cropping section, and
0.16 2020-10-17 Damianos updated the Text to Video Matching section
Galanopoulos
ApoE:claTircTizloEIeni Updated the Video Summarization section,
0.17 2020-10-17 y and added text to the Evaluating Video
Adamantidou, o .
oo . Summarization section
Vasileios Mezaris
0.18 2020-10-20 | Krzysztof Ciesielski Report on evaluation results of
recommendation algorithm
0.19 2020-10-21 Basil Philipp Review before QA
0.20 2020-10-22 Rasa Bocyte QA review
0.21 2020-10-24 Arno Scharl Review and minor corrections
0.22 2020-10-26 Basil Philipp Review and minor corrections
1.0 2020-10-27 Lyndon Nixon Post QA check by coordinator

Page 3 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both.

This deliverable reflects only the authors’ views and the European Union is not liable for any
use that might be made of information contained therein.

Page 4 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

Contents
(1__Introduction 9
|2 Video Adaptation and Re-Purposing| 10
2.1 Video Summarization| 10
[2.1.1 Updated Problem Statement and State of the Art|. 10
[2.1.2 Video Summarization Updated Approach|. 11
[2.1.3 Evaluating Video Summarization: A Study on the Established Evalua- |
[tion Protocol and a New Robust Evaluation Measurel 19
[2.1.4 Implementation Details and Use] 22
RI5 Results 22
|Video Summarization Experimental Settingl 22
[Selecting the Trained Model| 23
[Video Summarization Evaluation Qutcomes| 24
Ablation Study| 26
|Video Summarization Qualitative Analysis - A Summarization Example] 28
2.2 Smart Cropping| e 29
[2.2.1 Problem Statement and State of the Artl. 29
[2.2.2 Smart Cropping Approach|, 30
[2.2.3 Implementation Details and Use] 33
R24 Results 33
2.3 Text to Video Matching| 35
[2.3.1 Updated Problem Statement and State of the Art[. 35
[2.3.2 Text to Video Matching Approach| 36
[Self-Attention Mechanisms|. L. 37
[2.3.3 Implementation Details and Use] 38
R34 Results. 39
2.4 Updated Component, Workflow and API{ 40
[2.4.1 Video Summarization Component Updated Functionalities and Outputs| 40
[2.4.2 Component Updated APl and Usage Instructions| 41
[2.4.3 Component Testing and Software Quality Assessment{. 42
|3 Content Recommendation and Scheduling| 43
3.1 Measuring User Engagement in the 4u2 Messenger] 43
3.2 Optimized Retention in the 4u2 Messenger{. 45
3.2.1 Overview of Content-based Recommendations 47
[Content-based User Profilel 47
|[Finding Relevant Video Candidates|. 48
Diversified Recommendations 48
[MuTtiple Recommendations| 49
|[Exemplary Results|o oo 49
[Cold-start Problem| 50
Demo Frontend 51
[nitial Evaluationl oo 52
[3.2.2 Understanding the Meaning of User Reactions| 53
[3.2.3 Optimizing the Publication Time| 54
[3.2.4 Extended Approach based on Collaborative Filtering|. 54
|3.3 Recommendation and Scheduling in the Content Wizard| 56

Page 5 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

B31 TexttoVideosearchl, 57

[3.3.2 Analysis of Search Integration| 59

[3.3.3 Optimal Publication Time for Social-Media| 61

|3.4 Recommendation and Summarization in the Storypact Editor] 62
|Overview of the Functionality] 62

|Language Selection and Focus Keywords| 62

Editor Modesl 62

[Text Summarization Options| 63

|lterative Development and Evaluation| 64
4__Conclusion and Outlook| 66

Page 6 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

EXECUTIVE SUMMARY

The objective of WP3 is to deliver components for content-adaptation, summarization, rec-
ommendation and scheduling. This deliverable is an update of D3.2 and the final deliverable
of WP3. It reports on our improved results in content adaptation, summarization, recom-
mendation and scheduling that are employed in ReTV's Content Wizard and 4u2 use case
applications.

We present a new architecture for unsupervised video summarization which works together
with the previously developed, non-learning method of video summarization.

We present the state-of-the art results of our Text to Video matching service and how we
built a search API on top of it. This search API is used in the Content Wizard for improved
scheduling of content. We also use Text to Video matching in our extended approach to
recommendation in the 4u2 use case applications.

We further present a text editing environment, which assists users in creating and fine-tuning
the wording of postings and other dissemination texts. The editor's sidebar provides access to
various content recommendation and summarization tools.

Page 7 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

ABBREVIATIONS LIST

Abbreviation

Description

Application Programming Interface: a set of functions and procedures that

API allow the creation of applications which access the features or data of an
application or other service.

DCNN Deep Convolutional Neural Network: a type of artificial neural network.

DTR Dilated Temporal Relational unit: a convolutional module for capturing
temporal dependencies on various time windows.
Electronic Program Guides: menu-based systems that provide users of

EPG television with continuously updated menus displaying broadcast programming
or scheduling information for current and upcoming programming.

GAN Generative Adversarial Network: a deep learning architecture where two
separate neural networks compete against each other.

GRU Gated Recurrent Unit: a type of recurrent neural network.

HTTP Types of metho.d in the Hypertext Transfer Protocol (HTTP). The HTTP

POST/GET POST method is used to send data to a server to create/upda.te a resource.
The HTTP GET method is used to request data from a specified resource.

IPTV Internet Protocol Television: is the delivery of television content over Internet
Protocol (IP) networks.

JSON JavaScript Object Notation: a data-interchange format.

KTS Kernel Temporal Segmentation: a video fragmentation algorithm.

LSTM Long Short Term Memory networks: a type of recurrent neural network.
Multi-task learning: a field of machine learning in which multiple learning tasks

MTL are solved at the same time, exploiting commonalities and differences across
tasks.

NEL Named Entity Linking

NER Named Entity Recognition
Natural Language Processing: subfield of linguistics, computer science, and

NLP artificial intelligence concerned with the interactions between computers and
human (natural) languages.
Over The Top: content providers that distribute streaming media as a

oTT standalone product directly to viewers over the Internet, bypassing
telecommunications that traditionally act as a distributor of such content.

RDE Resource Description Framework: a method for conceptual description or
modeling of information that is implemented in web resources.

REST Representational State Transfer: an architectural style that defines a set of
constraints to be used for creating web services.

RNN Recurrent Neural Network: a type of an artificial neural network.

SKB Semantic Knowledge Base: a RDF-based triple store for a knowledge
representation of keywords and entities during in annotation of documents

TVoD Transactional Video on Demand: a distribution method by which customers
pay for each individual piece of video on demand content.

URL Uniform Resource Locator: a reference to a web resource that specifies its
location on a computer network and a mechanism for retrieving it.

VAE Variational Auto-Encoder: a generative neural network that models a data

distribution.

Page 8 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

1. Introduction

This deliverable reports on the work done in WP3 during months 20 to 34. It covers work done
in T3.3 "Content Adaptation and Re-Purposing" and T3.4 "Content Recommendation and
Scheduling". The tasks T3.1 "Metadata and Vocabulary Interoperability" and T3.2 "Viewer
Profiling" ended in M20 and are covered in D3.2.

Section [2| summarizes the work done in T3.3 and explains our updated approaches to video
summarization and Text to Video matching. Both video summarization and Text to Video
matching are deployed as services and integrated into the use cases.

Section [3| summarizes the work done in T3.4. We present our extended approach to recom-
mendation and scheduling which is specifically targeted at increasing user retention in the
4u2 Messenger. It builds on top of the work present in section [2] resulting in an innovative
approach to video recommendation. We also describe and evaluate our newly developed Text
to Video search API which is at the core of a novel solution to surface content to editors in
the Content Wizard. Finally, content publishers need support not only in the re-purposing
of the video to be posted but also benefit from guidance regarding the accompanying text.
The Storypact text editing and summarization tool of ReTV described in Section provides
such guidance. It assists users in creating and fine-tuning the wording of postings and other
dissemination texts to maximize their impact. The editor's sidebar provides access to various
content recommendation and summarization tools.

Page 9 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

2. Video Adaptation and Re-Purposing

2.1. Video Summarization
2.1.1. Updated Problem Statement and State of the Art

A first description of the video summarization task (used in ReTV for content adaption and
re-purposing) was provided in Section 4.1 of D3.2; this description is still completely valid. As
a brief reminder, video summarization aims to generate a concise synopsis that conveys the
important parts of the full-length video; based on this, viewers can have a quick overview of
the whole story without having to watch the entire content. Several methods were developed
to automate video summarization, and a first overview of the relevant bibliography was given
in Section 4.2.1 of D3.2. In the following sections, we provide an update of our first report,
focusing on deep-learning-based methods that represent the current state of the art. As
a short reminder, a coarse division of these methods can be made between supervised and
unsupervised approaches. The former rely on datasets with ground-truth data and try to
discover the underlying criterion for video summarization from human-generated summaries.
The latter aim to learn video summarization without any use of ground-truth data.

Regarding the class of supervised video summarization techniques, most new algorithms adopt
one of the following general directions: i) model the temporal dependency among frames to es-
timate their importance and select the most important frames/fragments to form the summary,
i) model the spatiotemporal structure of the video to estimate the frames' importance and
select the most important frames/fragments to form the summary, or iii) exploit the available
textual metadata to perform semantic- or video-category-driven summarization.

In the first direction, [53] builds on [I08] (presented in D3.2) and introduces an attention
mechanism to model the temporal evolution of the users’ interest. Following, it uses this
information to estimate frames’ importance and select the video key-frames to build a video
storyboard. [23] presents a seq2seq network made of a soft self-attention mechanism and a two-
layer fully connected network for regression of the frames’ importance scores. [64] proposes a
hierarchical approach which uses a generator-discriminator architecture (similarly to [65] which
was reported in D3.2) as an internal mechanism to estimate the representativeness of each
shot and define a set of candidate key-frames. Then, it employs a multi-head attention model
to further assess candidates' importance and select the key-frames that form the summary.
Finally, [89] stacks multiple LSTM (Long Short-Term Memory; types of Recurrent Neural
Networks, as discussed in D3.2) and memory layers hierarchically to derive long-term temporal
context, and uses this information to estimate the importance of video frames.

In the second direction, most algorithms rely on advanced network architectures to extract
spatiotemporal data about the video. [49] utilizes convolutional LSTMs under an encoder-
decoder architecture to identify the spatiotemporal relationship among different parts of the
video, and enhances the diversity of the video summary via next frame prediction and next scene
detection mechanisms. [105] uses 3D-CNNs (3-Dimensional Convolutional Neural Network)
for representing the video content, in combination with convolutional LSTMs to model the
spatial and temporal structure of the video, and select the video key-frames. [12] extracts
spatial and temporal information by processing the raw frames and their optical flow maps
with CNNs, and estimates the importance of each frame using an LSTM and based on human
annotations, after training the entire model via a label distribution learning process. [36] trains
a neural network for spatiotemporal data extraction, and uses this information to create an
inter-frames motion curve. Then, shot segmentation is performed via shot transition detection,

Page 10 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

and a self-attention model is utilized to select the key-frames/fragments of the video and form
a static/dynamic video summary.

In the third direction, a new method that follows the idea of early supervised approaches
and focuses on the high-level semantics of the visual content, was presented in [106]. This
method defines a video summary by maximizing its relevance with the available metadata
about the video (i.e., title, abstract, keywords), after representing both the visual and the
textual information in a common semantic/latent space. [118] follows the paradigm of [101]
(presented in D3.2) and learns category-driven summarization by rewarding the preservation
of the core parts found in video summaries from the same category (e.g., the main parts of a
wedding ceremony when summarizing a wedding video). Similarly, [54] trains action classifiers
with video-level labels for action-driven video fragmentation and labeling; then, it extracts
a fixed number of key-frames and applies reinforcement learning to select the ones with the
highest categorization accuracy, thus performing category-driven summarization. Finally, [96]
applies a visual-to-text mapping and a semantic-based video fragment selection according to
the relevance between the automatically-generated and the original video description, with the
help of semantic attended networks.

By contrast to the aforementioned three general approaches, [9] presents a weakly-supervised
approach that uses the principles of reinforcement learning to learn summarization based on
a limited set of human annotations and a set of hand-crafted rewards. The later relate to
the similarity between the machine- and the human-selected fragments, as well as to specific
characteristics of the created summary (e.g., its representativeness). This method applies a
hierarchical key-fragment selection process that is divided into sub-tasks. Each task is learned
through sparse reinforcement learning (thus avoiding the need for exhaustive annotations about
the entire set of frames, and using annotations only for a subset of frames) and the final
summary is formed based on rewards about its diversity and representativeness.

With respect to unsupervised video summarization, new methods build on the success of previ-
ous approaches, that mainly rely on the use of Generative Adversarial Networks or the principles
of reinforcement learning. [41] extends the architecture of [65] (which was discussed in D3.2)
with a chunk and stride network (CSNet) and a tailored attention mechanism for assessing the
frames' temporal dependency at different granularities to select the video key-frames. [104]
tries to maximize the mutual information between the summary and the video using a train-
able couple of discriminators and a cycle-consistent adversarial learning objective. [34] presents
a self-attention-based conditional GAN to simultaneously minimize the distance between the
generated and raw frame features, and focus on the most important fragments of the video.
[26] utilizes Temporal Segment Networks (proposed in [9I] for action recognition in videos)
to extract spatial and temporal information about the video frames, and trains the summa-
rizer through reinforcement learning and a reward function that assesses the maintenance of
the video's main spatiotemporal patterns in the produced summary. [115] presents a mecha-
nism for both video summarization and reconstruction. Video reconstruction aims to estimate
the extent to which the summary allows the viewer to infer the original video (similar to the
GAN-based methods), and video summarization is learned via reinforcement learning, based
on the reconstructor’s feedback and the output of models assessing the representativeness and
diversity of the generated summary.

2.1.2. Video Summarization Updated Approach

In D3.2, we presented our first release of methods for unsupervised video summarization.
Both of these algorithms rely on a GAN-based architecture to train a mechanism for key-

Page 11 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

frame/fragment selection. The first (termed “SUM-GAN-sl” and presented in Section 4.4.1
of D3.2) uses a Variational Auto-Encoder to reconstruct the original video given the set of
weighted feature vectors according to the importance of the corresponding video frames. The
second (called "SUM-GAN-AAE" and described in Section 4.4.2 of D3.2) replaces the Vari-
ational Auto-Encoder with a deterministic Attention Auto-Encoder (AAE) to better identify
the most important frames/fragments of the video. The evaluation of these algorithms on two
benchmark summarization datasets (SumMe [30] and TVSum [83]) showed that both of them
are highly-competitive against the current state of the art on unsupervised video summariza-
tion. Nevertheless, further experimentation with these methods, as well as with other video
summarization techniques (dppLSTM [108], DR-DSN [117]) that use similar frame scoring
mechanisms, resulted in findings that are consistent with the claims in [41] about the low
variation of the computed frame-level importance scores by LSTMs. As a consequence, the
selections made by the trained LSTM seem to have a limited impact in summarization; the
latter is mainly affected by factors such as the video fragmentation, or the approach used for
fragment selection given a target summary length (such as the Knapsack algorithm).

Aiming to tackle the identified limitation, we developed a new architecture for unsupervised
video summarization, that is based on a new formulation of the video summarization task. This
architecture introduces an Actor-Critic (AC) model into a Generative Adversarial Network,
to automatically learn a policy for selecting the most important parts of the video. The
learned policy amplifies the differences of the produced importance scores, thus forcing the
key-fragment selection process (i.e., the utilized Knapsack method) to choose parts of the
video that have been clearly indicated as the most important ones.

The building blocks for defining a new formulation of the video summarization task were the
works of [27] and [65]. The former discusses a connection between Generative Adversarial
Networks and Actor-Critic models, as the core part of an algorithm that deals with language
modelling tasks. The latter, (as reported in Section 4.1 of D3.2) is the first to utilize generative
adversarial learning for unsupervised video summarization. As reported in D3.2, [65] introduces
the use of a trainable discriminator to automatically define a similarity threshold between the
original video and a reconstructed version of it based on a sparse set of selected keyframes
(i.e., the video summary). So, we transferred the idea of [27] to the visual domain and
formulated the selection of important parts of the video (that will be used to define the video
key-fragments and produce the summary using the Knapsack algorithm) as a "visual sentence”
generation process. In most existing approaches for real-valued data sequence generation (e.g.,
text, speech or music synthesis [103]) the used vocabulary of tokens for synthesizing the data
sequence is a predefined collection of e.g., letters, words, or music notes. In our conceptualized
“visual sentence” generation process this vocabulary is created on-the-fly according to the
visual content of the submitted video for summarization. In particular, the tokens of the
created vocabulary when summarizing a video, correspond to video fragments of roughly the
same length, where each fragment presents a different part of the story. Based on the above,
we formulated video summarization as a sequential process that aims to progressively select a
set of visual tokens and produce a “visual sentence” that conveys the essential parts and the
flow of the story.

To materialize this formulation, we started from the unsupervised summarization algorithm
of [65] and built a new architecture (called "AC-SUM-GAN") that embeds an Actor-Critic
model into a Generative Adversarial Network to learn the optimal policy for selecting the most
important video fragments and form the summary. The Actor has the role of the sequence
generator and the generation is performed incrementally based on a set of discrete sampled

Page 12 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

actions over a group of video fragments. These actions indicate the selection or not of a
fragment and affect the state of the action-state space that is essential for training the AC
model. The number of actions IV is a hyper-parameter of the architecture, which relates to
the duration of the generated summary. The Critic has the role of the evaluator of the Actor's
choices and returns a value for scoring each choice according to its impact on the action-state
space. Finally, the Discriminator acts as the AC environment and returns a reward that is used
to train the AC model, which learns a value function (Critic) and a policy for video fragment
selection (Actor). This reward relates to the appropriateness of the Actor’s choices that define
the video summary, for eventually reconstructing a video that is indistinguishable from the
original one. In the sequel we describe in more detail the overall network architecture and the
learning objectives and pipeline. With respect to the used notation: capital bold letters denote
matrices, small bold letters denote vectors and non-bold letters (either capital or small) denote
scalar values.

Figure [] shows the architecture of the developed AC-SUM-GAN model. The sub-figure on
the left side provides details about the building blocks of the architecture and shows how
these blocks are connected and interact. Blue coloured rectangles indicate parts related to the
Actor-Critic model. The sub-figure on the right side presents the data flow in the architecture.
These illustrations show the input and output of each different part of the architecture, thus
explaining the role of each part of the architecture and the way that the AC model is used to
incrementally select the key fragments of the video and form the summary. On both sides of
Fig. [I dashed lines represent iterative processes during the training of the AC part.

The developed AC-SUM-GAN architecture extends the previous ReTV method, reported in
[65] and D3.2, by: i) introducing an AC model for key-fragment selection, ii) adding a new
component (called State Generator) that integrates the Frame Selector of [65] (bi-directional
LSTM) and produces a state of a fixed length which is essential for training the AC model,
and iii) using the Discriminator’s feedback to automatically learn a value function (Critic) and
a policy for video fragment selection (Actor). In the sequel we present the different parts of
the architecture by describing the training workflow.

Given a video of T frames and a linear compression layer that reduces the size of the deep
feature vectors, the processing pipeline for training AC-SUM-GAN comprises of:

A State Generator that consists of a bi-directional LSTM followed by an average pooling
operator. The former captures the temporal dependency over the sequence of frames in both
forward and backward direction and assigns a weight to each video frame that represents its
importance (frame-level scores s = {s;}_; with s; € Rand 0 < s; < 1). The latter takes the
computed frame-level scores s and produces the initial state f of the AC action-state space
by calculating scores at a coarser fragment-level; for this the video is segmented into M non-
overlapping fragments of duration d, and a score is computed for each fragment by averaging
the weights of the frames included in the fragment (f = {f; ;-Vil with f; € R and f; =

(0L 1yapa 50)/)-

An Actor (fully connected network), who plays an “N-picks” game to explore the action-
state space, and in every step i (with 1 < i < N) of this game: i) gets the current state
(f:= {fj}j]\/il), ii) produces a distribution of actions ¢; = {cj}jjvil, and iii) takes an action
p; by sampling the computed distribution, and picks a video fragment k. This action leads to
the next state f;,; of the action-state space, which is produced by zeroing its k" element
(fr. = 0) to minimize the probability of having the k" fragment re-selected in a subsequent
step of the game. Moreover, it affects the computed frame-level weights s by increasing

Page 13 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

. A .
Encoder Decoder X={XJ}: (Discriminator W’={512XT)__ Encoder- Decoder __ X = {512 D.scr.m.nator
— — > _— Z
15w LsTw : 157w [V] W4 M]] i
: F’;E R / Fragmean Weighted Reconstructed X'T |
TW = {Wt}Ll % | Selector | Feature Vectors X N Feature Vectors |
Fragment n | —»X —X) :
Selector = : T T T
(X Reward | 1A Decrease 8’ = (s () 1A Degrease 8’ = (s't} l{pdated frame-level |
T ,_ signal i | T L W, importance scores |
s = {s"y il l”‘”\" T l” "*U‘" JW\ w'lwl‘m w» |
For i=L:N | 0 f’ A AL |
[t ”’”””””””g’rJ:”’"‘ : Increase T Increase T |
Actor Critic i | |'R_ewarH:l_ ————— TRewardZ — — — —
_ __‘ Dllstrete. -« ‘ FCN ‘ [Actor Valuev, ¥ Actor Valuev, ¥ Action (pick) 1> N
I actions | 1 Action p; € — — Critic Action p, € — — Critic
| Ta= (ot 4 : - A= A
I FCN |] 0 | o |
[|] |
I |
]
]

‘ I I
| | i
‘ I I
(D _“:::q - I t fi={fi 1 t f2= {f}Y : fa = {fi}}Yy
! " I state1 || state2 | State 3
b= 1@ o | 7y
I [

State Generator | || o ____ T______::::j _________
F(s)

s={stl_, 1““‘: W]

Bi-LSTM

b s= {s‘) Frame-level
t=1 importance scores

aﬁe;s ESIEICITEIN
1B Pasn 5U0MIIN

u 1 T
X = {X'th. (J%% Linear
. T <
\L X = {xt}; [[l¢¢ l¢¢:|j| Cc;mpresslon“:Lil ¢¢¢:|:| CNN
Network used at CompEssion Video frames
the inference stage Compressed Feature Vectors Original Feature Vectors Video frames

Figure 1: The AC-SUM-GAN architecture. On the left side we show the building blocks of the
architecture and their connections. Blue colored rectangles indicate parts related to
the Actor-Critic models. On the right side we give an example of the data flow by
presenting the input and output of each different part of the architecture. On both
sides of the figure, dashed lines represent iterative processes during the training of
the AC part. The orange box shows the part of the architecture that is used for
inference; at the training stage, the entire architecture is used.

the ones associated to the frames within the selected fragment using action-weighting factors
and reducing the ones that correspond to frames of fragments that have not been selected
to any step of the game, resulting in a new set of frame-level weights s’. For the i*" step,
these action-weighting factors (AwF') for promoting the selected fragments are computed as

follows:
N—(i—1)

M—(i—1)
The reasoning behind the computation of the action-weighting factors is that the model needs
to pay more attention to the first-selected fragments, thus the action-weighting factor in step
1 is larger than the one in step i+ 1.

AwF; = +1,i€[i,N] (1)

The reduction factor (RF) is applied to the non-selected fragments only once, at the end of
the game, and is computed as follows:

RF = (M —N)/M (2)

A Critic (fully connected network), who is also involved in the “N-picks” game and in every
step ¢ (with 1 < i < N) of this game: i) gets the current state f; (generated either at the
beginning of the game by the State Generator, or as a result of the Actor's choices in every
step of the game) and ii) computes a value v; about this state, as an assessment of the Actor’s
choice.

A Fragment Selector (matrix multiplication operator), which uses the updated frame-level
scores after each step of the game s’, that carry information about the Actor’s preferences

Page 14 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

w.r.t. the most important (key) fragments of the video, to assign scores to the compressed
features of the video frames (X’ = {x}}]_,) and produce a weighted version of them (W =

{wt}tT:1)-

A Variational Encoder-Decoder (LSTMs), which tries to discover the underlying struc-
ture of the weighted data after the Actor's choices and reconstruct the original video frames
(X = {sfct}:tp:l). The goal of this encoding-decoding process is to minimize the reconstruc-
tion error and produce a highly realistic representation of the original video that fools the
Discriminator.

A Discriminator (LSTM), which forms the AC environment and in every step i (with 1 <i <
N) of this game: i) gets the compressed feature vectors of the original video X’ and the feature
vectors of its reconstructed version, based on the Actor’s choices and the subsequent encoding-
decoding process, X, ii) defines a new latent representation for each of the aforementioned
versions of the video, iii) computes a reconstruction loss (scalar value) based on the proximity of
these representations, and iv) returns a reward to the Critic that is calculated as follows:

ri=1— Lyecon, 7i €R, i € [i,N] (3)

When the action sampled by the Actor leads to the selection of an already selected fragment,
then the returned reward equals to zero to penalize the fragment's re-selection.

The different components of the architecture are trained based on a set of learning objec-
tives and through a 4-step process. The learning objectives for training the State Generator,
Encoder, Decoder and Discriminator of the developed AC-SUM-GAN architecture include: a
regularization loss (Lgsparsity), a prior loss (Lprior), a reconstruction loss (Lyecon), the “orig-
inal" (Lorrg) and “summary” (Lsyas) losses, and the generator loss (Lgpn). For sake of
space we provide a short explanation of these losses and refer the reader to Section 4.4.1 of
D3.2 for a more detailed description.

* Lgparsity aims to force the State Generator to produce a sparse and diverse set of scores
based on a regularization factor o.

» Lyrior measures how much information is lost when using the Encoder’s latent space to
represent the VAE's prior distribution.

= L, econ €stimates the distance between the original and the reconstructed feature vectors.

» Logric and Lgyy relate to a label-based training approach (labels “1" and “0” denote
the original and the reconstructed feature vectors for the adversarial part of our method)
and used to train the Discriminator; Logyq is used to minimize the difference between
the computed probability and the “video” label when the Discriminator gets the original
video, and Lgyas is used to minimize the difference between the computed probability
and the “summary” label when the Discriminator gets the summary-based reconstructed
video.

» Lggn is used to minimize the difference between the probability computed by the Dis-
criminator when the latter is fed with the reconstructed video and the “video" label, thus
forcing the generator to reconstruct a video that is indistinguishable from the original.

To train the introduced AC model, the Actor uses the received feedback from the Critic after
each step of the “N-picks” game, and aims to learn a policy that maximizes the probability of
an important fragment to be used during the summary generation. This goal is captured by

Page 15 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

the following loss:
1 N N
Lactor = — N Zlnci Qi + 5ZH(CZ) (4)
i=1 i=1

where Inc; and H(c;) represent the logarithm and the entropy of the calculated probability
density function ¢; at each step of the game, a; is the advantage that indicates how much
better it is to take a specific action compared to the average action at the i state of the
game, and 0 is an entropy regularization coefficient. The advantage is defined as the difference
between the returns z; and the values v; computed by the critic:

a; =z — V4, 1€ [1,N] (5)

The return is the discounted cumulative reward of all steps and is computed by the following
formula:

N
= 7" (6)
b=

where 7; is the Discriminator’s reward at the ¥ step of the game, and ~ is the discount factor
that shows how important future rewards are to the current state (y € R, 0 <~ <1).

Finally, the Critic tries to learn how to evaluate the Actor’s choice at the i step of the game
by computing a scalar value v;. Its training is based on the following loss:

1 N
Leritic = N Za? (7)
=1

The training process is comprised of 4 distinct steps (4 pairs of forward and backward passes),
in each of which a different part of the AC-SUM-GAN architecture is trained (Figs. |2/ and .
Specifically, in the 15! step the algorithm performs a forward pass through the entire network,
computes Lyrior and Lyecon and makes a backward pass to update the Encoder. In the ond
step, after a forward pass of the partially updated architecture, it computes the L;,e¢con, and
LN and uses their sum to update the Decoder. The 37 step is implemented in 2 sub-steps.
In particular, a forward pass of the (once again) partially updated model leads to the creation of
the reconstructed feature vectors X, which are then used for calculating Lgiras. Subsequently,
the compressed feature vectors of the video frames X' are fed to the Discriminator and Loric
is calculated. The gradients computed from the losses after two individual backward passes
are accumulated and used to update the Discriminator and the linear compression layer that
affects the compressed feature vectors.

The training of the remaining components, namely the State Generator, the Actor and the
Critic is carried out in the 4 step of this incremental process (see Fig. . More precisely, the
original feature vectors X pass through the first three components of the partially updated
model and produce the initial state (f; = {fj}j]‘il) of the action-state space. The latter is
given as input to the Actor and Critic which then play the “N-picks” game. In every step 7 of
this game (this iterative process is denoted by the “For loop” and the dashed-line bounding
box in Fig. the Critic computes a scalar value v; to assess the current state, while the
Actor takes an action by generating and sampling the distribution ¢;. This action affects
the computed frame-level weights s, resulting in s’. As explained before, these scores pass
through the remaining components of the architecture that also take part in the game during

Page 16 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

»(+
Lrecon
’ 7 X
Decoder | X Dlscrlmmator‘

N {Xt)(l -

s’ (Fragment | W
(s i\SreIector/‘{Wt}tT:l

’

-
o X Linear X State L
2 , >

P ‘ Compresswn Mxeed 1‘ Generator | {ﬂ)j’Y'l
— A 4 =

L— Back prop. j«—

A

— XI <A
>/ ‘Lrecon
Fragment w Encoder X Discriminator

‘ /LGEN

Selector waT,

Back prop.

a /
) Linear X State f1 [
g T | Compression /{y,)T Generator M \
© {X(}(:l p Nk ARG T 2T
~ _ {xe}iy 'y
“video”

i{s s

“video”

g X X [state ‘}—Fﬁ | | Fragment —»{w Encoder ’—» Decoder .
o T)T, Generator S K ‘{s ‘}T Selector {
% = 1@ DAL I

“summary”

Figure 2: The first three steps of the incremental training procedure. Dark-coloured boxes
denote parts updated in each step.

Lsparsity > Conc. = ' s % 3 g

—_— = 9
s e S ORE
Ta \ PN = L2 ~3
S8 |w | 2 g g | 82 2 g &
gﬂ S i 3 H 8 i £ > Conc. < Y| o

< T n = J

o g ‘(Wl}t:l\ = a /‘{x(}Ll :Ln—) Lsparsity
L / . - \ — | wv [N
-~ — = . a / o 8 4l

L8
Inci Concl LP={inc}t, |5+ g

¢ o £ 5L

i i t

7777777777777777777777777777777777 He) om, 2H@ & Sfteter,
Ol &

<

Figure 3: The 4% step of the incremental training procedure. Dark-coloured boxes denote the
parts updated in this step.

this 4t" step. The reconstructed video is finally assessed by the Discriminator, which computes
a reward r; at each step of the game.

At the end of the game, the architecture produces the vectors v = {1;}¥,, » = {r;}¥,,
LP = {Inc;}Y,, and the scalar value En = 3" | H(c;), whose elements have been pre-
viously described. The former two are used to compute the maximum expected returns and
subsequently the advantage of taking a specific action compared to the average, general action
at each given state. The computed advantages contribute to the training of the Critic. The
training of the Actor is performed simultaneously with the training of the State Generator
in a step-wise manner, similar to the Discriminator’s training process. It uses the computed
advantages a = {ai}f\il, LP and En values to form the Lyt and train the Actor, and the
Lsparsity that trains the State Generator. In this update step, the linear compression layer is
also trained.

The added complexity with regards to [65] is the introduction of the AC model (composed
of fully-connected networks) for key-fragment selection and the design of a training process
that uses the Discriminator’s feedback as a reward. However, as shown in Fig. [d} the applied
step-wise learning process allows all the different components to be trained effectively, and
the AC-SUM-GAN model gets higher rewards as the training proceeds (see the bottom-right

sub-figure of Fig. .

After the end of the training time, the model can be used for summarizing a new (unseen during

Page 17 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

Training Discriminator

Training Encoder Training Decoder & Linear Compression Layer

Prior Loss (Lprior) Reconstruction Loss (Lrecon) Generator Loss (Laen) Sum & Orig Video Losses(Lsum & Loric)
40 02 0.265
0013
32 016 0.261
Lowic
24 0.12 0.257 00127
16 0.08 0253 0.0124
8 004 0.249 00121
Lsum
0 0 0245 00118
0 10 20 30 4 50 6 70 8 90 0 10 20 30 4 50 6 70 8 90 0 10 20 30 4 S0 60 70 8 9 0 10 20 30 4 50 60 70 8 90
Critic Loss (Leritic) Actor Loss (Lactor) Regularization Loss (Lsparsity) Reward (R)

09 0.005 0915
06 0.004 0888
03 0003 0861

0 0.002 0834

02 03 0.001 0.807
0 10 20 30 40 S0 60 70 8 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 8 90 0 10 20 30 40 50 60 70 80 90

Training Actor, Critic, Frame Weighting Mechanism
& Linear Compression Layer

Figure 4: Loss and reward curves for the different components of the developed model. The
horizontal axis in all plots indicates the epoch number. These curves indicate the
successful training of Encoder, Decoder, Actor, Critic, Frame Weighting Mechanism
and Discriminator, and the model’s ability to get higher rewards as the training
proceeds.

training) video. The utilized components at this stage (inference) are the ones surrounded by
the orange boxes in Fig. [In particular, at inference time, given a video of T' frames,
the model gets as input the CNN-based deep feature representations of the video frames
(X = {x+}]_;) and produces a sequence of frame-level scores (s’ = {s;}_;) that signify
each frame’s importance and thus, its suitability to be included in the summary. This process
starts by passing the deep feature vectors through a linear compression layer (fully connected
layer for dimensionality reduction) that reduces their size. Then, the State Generator gets
the compressed feature vectors and produces the initial state of the action-state space for
training the AC model. For this, it assigns an importance score to every video frame according
to its temporal dependency with the other frames of the video, and computes fragment-level
importance scores via an average pooling operation. Given this state, the trained Actor plays an
“N-picks” game and selects IV non-overlapping, roughly equal in length, fragments of the video.
The Actor's choices result to an update of the initially computed weights, by increasing the
scores of the frame sequences corresponding to the selected fragments and reducing the scores
of the remaining ones, according to the predefined scaling factors (see Equations ,. The
updated sequence of frame-level scores - with the selected fragments being clearly indicated by
greater importance scores - forms the output s’ of the inference stage. This output s’ is finally
used to define a video summary that does not exceed the target summary duration (in most
SoA summarization works this is typically set to 15% of the original video duration, a condition
adopted also here to allow direct comparisons). For this, importance scores are computed at
the level of video fragments defined using the KTS method [75], and the key-fragments of the
video are selected and form the summary using the Knapsack algorithm.

The above-described method does not incorporate any of the editor-specific rules that are also
important for the ReTV applications. As a brief reminder, these rules, which were originally
reported in Section 4.3 of D3.2, are:

= avoid the selection of segments that include:
— blurry content
— visual effects
— content related to specific parts of a TV news program

Page 18 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

— extreme camera movement

= avoid including two or more visually similar segments

= support taking into consideration a list a concept IDs from the adopted concept pools
of ReTV, i.e., query-based summarization

= support taking multiple videos as input and produce a single summary, i.e., multi-video
summarization

= support a user-defined parameter to adjust the generated summary's length

= support a user-defined parameter that adjusts the pace of segments’ changing, i.e., the
rhythm of the summary

In order to incorporate these editorial rules, we further extend the method described thus far in
this section, as follows. First, the frame-level importance scores are calculated using the above
described method. Taking into account the shot segmentation that the Video Analysis service
of WP1 computes, we calculate the shot-level scores by averaging the scores of the frames
of each shot. We continue to rank the shots based on this shot-level score, producing a first
shot ranking. We also compute a second shot ranking by employing the editor-specific rules,
as described in Section 4.3 of D3.2. We combine these two rankings by averaging the rank of
each shot, producing a final, combined shot ranking that does incorporate the ReTV editorial
rules. The summary script is then generated using this final ranking, by applying to it the
exact same procedure that was described in the 4t paragraph in Section 4.3 of D3.2. In this
way, the adjustment of the summary length and summary rhythm parameters, as well as the
multi-video and query-based summarization functionalities, are still supported by the new video
summarization method. It should be stressed that the target summary duration is user-defined
and can be freely adjusted, as in our previous ReTV methods; the “15% of the original video
duration” that is mentioned earlier in this paragraph is merely a training parameter for the
learning-based method, and is also used in order to allow the direct comparison of the learning-
based video summarization method’s results to those of other literature methods (15% is the
commonly-used parameter for summary length in the relevant literature).

Complying with the agreed ReTV architecture, all features necessary to apply the editor-specific
rules as well as the learning-based summarization scores are extracted in the Video Analysis

service of WP1 (see Section 6.2 of D1.3), are stored by GENISTAT and are readily available
for the Video Summarization service of WP3.

2.1.3. Evaluating Video Summarization: A Study on the Established Evaluation
Protocol and a New Robust Evaluation Measure

In parallel to the development of the AC-SUM-GAN method, we studied in more details
the established protocol for evaluating video summarization, which relies on the use of the
SumMe [30] and TVSum [83] datasets. As a brief reminder of our reportings in Section 4.6.1
of D3.2, these datasets provide a set of videos along with multiple human annotations for each
video; in SumMe the annotations indicate the selected video fragments that form the video
summary, while in TVSum they correspond to values signifying the importance of each frame
of the video. To enable matching between key-fragment-based summaries (i.e., to compare
the user-generated with the automatically-defined summary), videos are first segmented into
consecutive and non-overlapping fragments. Then, based on the determined scores for the
fragments of a given video (through the analysis), an optimal subset of them (key-fragments)
is selected and forms the summary. The alignment of this summary with the user summaries for
this video is evaluated by computing F-Score in a pairwise manner. In particular, the F-Score

Page 19 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

for the summary of the i*" video is computed as follows:

W
Fi - = 2 ,] ~M,]
Wi z_: Pij+ R ®
]_1)).

where W; is the number of available user-generated summaries for the i test video, P; ; and
R; ; are the Precision and Recall against the 4% user summary, and they are both computed
on a per-frame basis. Most commonly, the evaluation involves the use of a small set of
randomly-created training/testing splits of the utilized dataset and the typical experimental
setting found in the literature can be summarized as follows: 80% of data is used for training
and the remaining 20% for testing; the length of the generated summary should not exceed
15% of the original video duration; experiments are usually conducted on 5 different randomly-
created data splits and the average performance is reported. The above described evaluation
protocol - with slight variations that mainly relate to the number of experiments using different
randomly created splits of the data (5-splits; 10-splits; “few"-splits; 5-fold cross validation) -
has been adopted by the vast majority of the SoA works on video summarization (e.g., [66),
38, 169, 111), 117, 97, [109| 118 [113| 23] [21], 42| 104, 5} 3] 116, 13, 35, [77, 90, 50, 57]).

We examined the aforementioned evaluation approach from a perspective that is aligned with
our view regarding the characteristics of an optimal evaluation protocol for video summariza-
tion. More specifically, such a protocol should be applicable to a small set of data splits and
provide results that are highly representative of the method's performance. In this way, the
evaluation outcomes on a few data splits (e.g., on a set of 5 splits, as is commonly the case in
the literature) would be generalizable to any large set of data splits, that typically enables more
safe conclusions about a method’s performance. This would also allow reliable comparisons
among algorithms that have not been assessed on the exact same set of data splits. To our
knowledge, whether the established evaluation approach has these properties or not, has not
been investigated thus far. Nevertheless, such a study is particularly important for assessing
the reliability of the reported comparisons in video summarization works.

Our study started with the evaluation of five video summarization methods (two supervised:
dppLSTM [108], VASNet [23]; and three unsupervised: DR-DSN [1I7], SUM-GAN-s| [5],
SUM-GAN-AAE [3]) using the established protocol and a fixed set of 5 randomly-generated
data splits of the SumMe and TVSum datasets (that simulates the evaluation conditions of
most SoA works). Besides our SUM-GAN-sI and SUM-GAN-AAE methods, the other three
utilized methods are, to our knowledge, the only ones for which implementations are publicly
available, and thus allow us to run our experiments. Then, we examined the extent to which
the evaluation outcomes are generalizable on a significantly larger set of 50 splits. Finally,
we compared our findings with the performances reported in the corresponding papers and
assessed the reliability of comparisons that do not consider common evaluation conditions
(i.e., the exact same data splits) for all methods, but simply rely on the reported results. In
both cases, splitting into training and testing data was based on the typical approach in most
SoA works; i.e., 80% of data was used for training and the remaining 20% for testing.

The results of these evaluations, along with the reported performances in the relevant papers
(see column “Rep.”) are presented in Table[I] In most cases there is a noticeable difference
between the results obtained using the small and the large set of splits. These differences
do not necessarily indicate performance reduction in the large set, and are often larger than
differences between the methods. Furthermore, the methods' rankings are quite different on
the small and large set of splits, and do not match the ranking based on the reported results.

Page 20 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

SumMe TVSum
Splits 5 50 Rep. || 5 50 Rep.
dppLSTM [108] 408 417 386 || 59.6 574 547
VASNet [23] 442 43.1 49.7 || 63.1 59.6 61.4
DR-DSN [117] 387 411 414 || 576 56.0 57.6
SUM-GAN-s! [5] 439 409 473 || 59.2 57.2 58.0
SUM-GAN-AAE [3] || 41.0 414 489 || 58.7 56.2 58.3

Table 1: Comparison (F-Score (%)) of five publicly-available video summarization approaches
in SumMe and TVSum datasets, using 5 and 50 randomly-generated splits. Column
“Rep.” reports the score from the relevant paper. Best score shown in bold, second-
best is underlined.

Methods' vs Human Performance on the SumMe dataset Methods' vs Human Performance on the TVSum dataset

F-Score (%)

split Split

F-Score (%)
8

21
split split

——Random (100 seeds) / Human --- dppLSTM VASNet ---DR-DSN — -SUM-GAN-s| SUM-GAN-AAE

Figure 5: Visualized performance for the tested summarization methods, the random and the
human summarizer in the SumMe (left side) and TVSum (right side) datasets. Many
similarities can be observed between the performance curves.

All these remarks point out a serious lack of reliability of comparisons that do not use the
exact same set of data splits.

To identify the reasons for the varying performance of all tested algorithms in the different
evaluation settings, we grouped the recorded values on a per-split basis. The result is depicted
in Fig. [5] and makes it obvious that there is a noticeable variability in the performance of the
examined algorithms over the set of splits. Moreover, this variability follows a quite similar
pattern for all methods, i.e., the performance curve of a summarization method is similar to
the curves of the other algorithms. These observations point to different levels of difficulty for
the used splits, a fact that clearly affects the outcomes of the performance evaluation.

Aiming to reduce the impact of the utilized data splits, we investigated the existence of a
potential association between the methods' performance and a measure of how challenging
each split is. Our study resulted in the design of a new evaluation protocol, called “Performance
over Random” (PoR), that is presented in [2]. This protocol makes estimates about the
difficulty of each used data split and utilizes this information during the evaluation process.
The experiments reported in [2], document the ability of the proposed PoR evaluation protocol
to provide more representative results about the performance of a summarization method, and
more reliable results when comparing methods run on different data splits.

For the needs of the ReTV project, we focused on the main conclusion of the aforementioned
study, that is the existence of different levels of difficulty among the randomly created data

Page 21 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

splits, which affect the results of the performance comparisons. Based on this finding, we
used the exact same set of data splits when comparing the developed AC-SUM-GAN method
with: our previous SUM-GAN-sl and SUM-GAN-AAE methods (see Table[3)); its implemented
variants as part of the conducted ablation study (see Table@; as well as other publicly-available
summarization methods (marked with asterisk in Tables [4] and [B)). These comparisons allow
us to document the achieved improvement over the last 14 months of the ReTV project, the
positive impact of the AC model when it is used as suggested, to select the most important
parts of the video, and the competitiveness of the developed AC-SUM-GAN method against
other SoA summarization approaches.

2.1.4. Implementation Details and Use

Video summarization was implemented and tested using the PyTorcFE] open-source neural-
network library version 1.5. Most of the experiments were conducted on an Intel i7 3770K PC
with 32GB of RAM, running Ubuntu 18, equipped with an Nvidia GeForce GPU (GTX 1080
Ti) or PC's with similar specifications.

2.1.5. Results

Video Summarization Experimental Setting

For evaluating our new AC-SUM-GAN algorithm we used the established benchmark datasets
and evaluation protocols in the relevant bibliography (discussed briefly in Section of the
deliverable and described in more details in Section 4.6.1 of D3.2). The performance of our un-
supervised AC-SUM-GAN method was assessed on the SumMe [30] and TVSum [83] datasets.
We evaluated the generated summaries with the F-score measure, which, as mentioned before,
expresses the overlap between a machine-generated and a user-defined ground-truth summary.
Concerning the split of data for training and testing, we again followed the established approach
(e.g., [108] and most literature works) of using 80% of the videos of each dataset for training
and the remaining 20% for testing. We run experiments on 5 different randomly-generated
splits for each dataset and in the following we report the average performance.

With respect to the different adopted settings and made configurations when training and
testing our method, we did the following. Similarly to other SoA summarization works, videos
were downsampled to 2 fps. Then M, the number of non-overlapping and temporally equal
video fragments, is dictated by the shortest video in our datasets, which is represented by 60
frames. So, M = 60 is the most fine-grained video representation possible, and this hyper-
parameter needs to be the same for all videos for training the AC model. The duration d of each
video fragment equals to the number of frames of a video divided by M. The target summary
length must not exceed 15% of the original video duration, a convention adopted by most
video summarization approaches. With regards to the number of steps IV, given the target
summary length (as stated before, 15% of the original video duration is the common choice
of most SoA works and adopted here to allow direct comparisons), N =15%- M = 9. Deep
representations of frames were obtained by taking the output of the pool5 layer of GoogleNet
[86] trained on ImageNet (similar deep features are used in most SoA works). The linear
compression layer reduces the size of feature vectors from 1024 to 512. The State Generator,
Encoder, Decoder and Discriminator components are composed of 2-layer LSTMs with 512
hidden units, while the State Generator's LSTM is a bi-directional one. Actor and Critic consist
of 4 and 5 fully connected layers respectively (see Fig. @ The output of the last layer of

1h‘l'.tps ://pytorch.org/

Page 22 of

https://pytorch.org/

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

utLayer 1‘,’3 Layer 3
4 Layer 4
= Softmax

Inp
layer 4)

-~

) () () O)

e _

>
(XD
Y

A
(
o0
,"I
|
TP
g

Y

%

)

prE= =

¥

60

o

512 512

1024

Figure 6: The architecture of Actor and Critic models. The values below each layer’s sketch
represent the size of the layer (number of nodes).

the Actor is fed to a softmax layer, to form a categorical distribution of probabilities. The
output of the last layer of the Critic is a scalar value between 0 and 1. The value of the
discount factor v is set to 0.99 in order to assign high importance to future rewards. Finally,
the value of the entropy regularization coefficient § is set to 0.1, following the example of other
publicly-available implementations of the Actor-Critic model E] The AC-SUM-GAN model is
trained in a full-batch mode (i.e., batch size is equal to the number of training samples) using
the Adam optimizer. The learning rate for all components but the discriminator is 10~* and
for the latter one is 107°. Training stops after a maximum number of epochs (100 in our
case), and a well-trained model is selected according to a designed criterion which targets the
maximization of the received rewards and the simultaneous minimization of the Actor's loss.
To promote reproducibility of our reportings, the implementation of the AC-SUM-GAN model
will be made publicly available on GitHub.

Selecting the Trained Model

We started our experimentation by studying different criteria for selecting a well-trained model
after the end of the unsupervised training process. In particular, we evaluated the performance
of the developed AC-SUM-GAN architecture when the trained model is selected based on the
training set only and according to:

= The maximization of the overall received reward, computed as the mean of the received
rewards 7; after each step of the "N-picks” game (so i € [1, N]) that guide the training
of the Actor-Critic model (the reward is a typical factor for early stopping when training
relies on reinforcement learning; such a criterion is used in [117]).

= The maximization of the overall received reward and the simultaneous minimization of
the Actor’s loss Lgctor, Which is the main component of the AC-SUM-GAN model that
is involved in the key-fragment selection process during the inference stage.

= The minimization of the reconstruction loss Lyecon that signifies a maximum alignment
between the original and the summary-based reconstructed video, and thus a represen-
tative summary.

» The simultaneous minimization of the reconstruction Ly¢con and sparsity losses Lgpqrsity;
the latter is used (in combination with Lgctor) for training the model's components used
at the inference stage (i.e., the linear compression layer, the State Generator and the
Actor).

= The maximization of the overall received reward and the simultaneous minimization

2https://github.com/dennybritz/reinforcement-learning /tree/master/PolicyGradient

Page 23 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

Criterion Reward Reward & | Recon. | Recon. & Reward &
/ Dataset Actor loss | loss Sparsity loss | Recon. loss
SumMe 49.0 50.8 50.1 49.8 49.0
TVSum 60.5 60.6 60.7 60.8 60.0

Table 2: Performance comparison for different model selection criteria. Values represent F-
Score (%).

of the reconstruction loss Lyecon, that both indicate maximum similarity between the
original and the summary-based reconstructed video, and thus a representative summary.

Driven by the remarks in [65] about the impact of the regularization factor o on the summariza-
tion performance, we considered several values for this parameter (i.e., o ranges in [0.1,1] with
a step equal to 0.1). Instead of manually choosing a value, the best value for o is also selected
based on the used criterion for model selection. So, this criterion is responsible for selecting
a well-trained model by indicating both the training epoch and the value of the regularization
factor o.

The results reported in Table [2] show that the impact of the employed criterion is much more
pronounced on the SumMe dataset, whereas on the TVSum dataset different criteria lead
to much smaller variation. Based on these results, we selected and used in all subsequent
experiments as criterion for model selection, the maximization of the overall received reward
and the simultaneous minimization of the Actor’s loss, which leads to the highest performance
on SumMe and a near-optimal performance on TVSum.

Video Summarization Evaluation Outcomes

The developed method was initially compared against our earlier approaches presented in D3.2
(SUM-GAN-sl and SUM-GAN-AAE). The results in Table (3| document the achieved progress
towards the improvement of learning-based video summarization during the last 14 months
of the project. The performance of the AC-SUM-GAN algorithm surpasses the performance
of both SUM-GAN-sl and SUM-GAN-AAE techniques. More specifically, the replacement
of the Frame Selector component of SUM-GAN-s|, by the Actor-Critic model and the State
Generator - that is mainly needed for supporting the training of the Actor and Critic - leads
to an increase in summarization performance equal to 3.0 percentage points on SumMe and
2.2 percentage points on TVSum. Moreover, our latest method AC-SUM-GAN exceeds our
attention-based approach (SUM-GAN-AAE) by 1.9 percentage points on SumMe and 2.3
percentage points on TVSum. So, 14 months after the initial release of technologies for
automatic video summarization, we have now made available a new method that further
advances the performance of the learning-based video summarization component of the ReTV
platform, and thus, improves the efficiency of the ReTV content adaptation and re-purposing
workflow.

SumMe | TVSum

SUM-GANCs|
(M20 of ReTV) | 478 | %84
SUM-GAN-AAE | o | oo

(M20 of ReTV)
AC-SUM-GAN | 50.8 | 60.6

Table 3: Comparison of the different developed learning-based video summarization methods
in ReTV, in terms of F-Score (%).

Page 24 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

SumMe TVSum AVG
F-Score Rank | F-Score Rank | Rank
Random summary 40.2 10 54.4 9 9.5
Online Motion-AE [110] | 37.7 12 51.5 11 11.5
SUM-FCNynsup [78] 415 9 52.7 10 9.5
DR-DSN [117] 41.4 — 57.6 — —
*DR-DSN [117] 38.7 11 57.6 6 8.5
EDSN [26] 42.6 8 57.3 7 7.5
UnpairedVSN [77] 47.5 5 55.6 8 6.5
PCDL [115] 42.7 7 58.4 4 5.5
ACGAN [34] 46.0 6 58.5 3 45
SUM-GAN-s| [5] 478 4 58.4 4 4
SUM-GAN-AAE [4] 48.9 3 58.3 5 4
CSNet [41] 51.3 1 58.8 2 1.5
AC-SUM-GAN 50.8 2 60.6 1 1.5

Table 4: Comparison with different unsupervised video summarization approaches, on SumMe
and TVSum. Rank denotes the relative ranking of the compared methods. Methods
marked with asterisk (*) have been evaluated also using the same data splits with
AC-SUM-GAN.

The AC-SUM-GAN model was then compared against a random summarizer and a set of SoA
unsupervised video summarization methods, on the SumMe and TVSum datasets. To estimate
the performance of a random summarizer, importance scores for each frame are randomly
assigned based on a uniform distribution of probabilities. The corresponding fragment-level
scores are then used to form video summaries using the Knapsack algorithm and a length
budget of maximum 15% of video duration. Random summarization is performed 100 times
for each video, and the overall average score is reported. The results in Table [4] show that: i)
the use of GANSs for unsupervised learning of the video summarization task is a good choice,
as the five top-performing methods (AC-SUM-GAN, CSNet, SUM-GAN-AAE, SUM-GAN-
sl, ACGAN) rely on this learning framework; ii) algorithms that use reinforcement learning
and tailored reward functions (DR-DSN, EDSN) are less competitive than the GAN-based
approaches, especially on SumMe; iii) a few methods (placed at the top of the Table) perform
approximately equally to the random summarizer in at least one of the used datasets; finally,
iv) the top-performing methods (AC-SUM-GAN, CSNet) try to tackle the limitation of the
LSTM-based models that relates to the low variance of the predicted importance scores for
the video frames. Concerning the top-performing methods, we see that AC-SUM-GAN is the
best on TVSum and the second best on SumMe, while the opposite is observed for CSNet; so,
practically we have a tie between these two methods. The competitive performance of CSNet
is mainly affected by the use of a tailored variance loss function which aims to increase the
variance of the estimated frame-level importance scores. In our AC-SUM-GAN method the
boost in performance is gained by the use of a trained AC model that uses the Discriminator's
feedback to learn a policy for key-fragment selection.

Our unsupervised AC-SUM-GAN model was also compared with SoA supervised video sum-
marization approaches, despite the fact that this is a rather unfair comparison for our method.
The data presented in Table [5 shows that: i) once again a few methods (placed at the top
of the Table) exhibit random performance in at least one of the used datasets; ii) a num-
ber of summarization techniques (Tessellation, MAVS) that exhibit high performance on one
dataset perform very poorly on the other; iii) the developed unsupervised AC-SUM-GAN model
performs consistently well on both datasets and, based on the average ranking after consid-

Page 25 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

ering both datasets, is the 3% top-performing method among a large set of SoA supervised
techniques; finally, iv) the best-performing approaches utilize tailored attention mechanisms
(VASNet, H-MAN, CSNetg,;) or memory networks (SMN) to capture variable- and long-
range temporal dependencies respectively, and we attribute their good performance on these
mechanisms.

Ablation Study

To assess the contribution of each of the major components of our model, we conducted an
ablation study. This study involves the following variants of the AC-SUM-GAN model:

= AC-SUM-GAN w/o VAE. This variant excludes the Variational Auto-Encoder, and the
weighted feature vectors at the output of the Fragment Selector are directly forwarded
to the Discriminator (i.e., X = W). Therefore, the incremental training of this variant
involves only the 37% and 4" step of the entire process (see Fig. [2/and .

= AC-SUM-GAN w/o Discriminator. This variant leaves out the Discriminator. Hence,
the model is not trained under an adversarial manner and the similarity between the
original and summary-based reconstructed version of the video (expressed by the recon-
struction loss) is estimated through the direct comparison of the corresponding feature
vectors. As a consequence, the 37? step of the incremental training process of Fig. [2is
omitted.

= AC-SUM-GAN w/o Actor-Critic. This variant does not contain the Actor-Critic model
and the State Generator's function F'(s) that is essential only for training the Actor-Critic
model. Consequently, the 41" step of the applied training process (Fig. [3) updates only
the State Generator and the linear compression layer using the sum of Lgprsity and

LT@COTL .

To eliminate the impact of the model selection criterion, in this set of experiments we considered
a fixed o value equal to 0.5 (which is the median of the o values considered in our experiments)
and manually selected the best trained model according to its performance on the test set (thus,
a performance higher to the reported one in Tables and can be recorded). Once again, we
ran this experiment on the same group of 5 randomly-created data splits and we report the
average performance. The results in Table [6] show that the introduction of the Actor-Critic
model has a clearly positive impact on the summarization performance on both datasets, which
is more pronounced on SumMe. Moreover, the other two major components of the developed
architecture, i.e., the Variational Auto-Encoder and the Discriminator, are also shown to have
a positive impact on performance.

In order to investigate what is the computational complexity of embedding an AC model into
GAN-based summarization architectures (such as the SUM-GAN model and its existing vari-
ations), we measured the training and inference times for AC-SUM-GAN against its variation
without AC. Results averaged over 5 data splits of the SumMe and TVSum datasets show that
the training time is increased by 55% - this is expected given the additional parameters that
need to be learned; however, there is no noticeable difference at the inference stage - in both
cases, video summarization takes less than 0.2 seconds.

3This literature work uses a different evaluation protocol; for this reason we do not present this result here.

Page 26 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

SumMe TVSum AVG
F-Score Rank | F-Score Rank | Rank
Random summary 40.2 27 54.4 22 24.5
vsLSTM [108] 37.6 29 54.2 23 26
SASUM [96] 40.6 25 53.9 24 24.5
ActionRanking [21] 40.1 28 56.3 20 24
APDVS [54] 41.2 21 51.3 25 23
ESS-VS [107] 40.9 23 — — 23
H-RNN [I12] 41.1 22 57.7 17 19.5
vsLSTM+Att [53] 432 18 -B — 18
DSSE [106] — — 57.0 18 18
DR-DSN,,, [117] 421 19 58.1 15 17
dppLSTM [108] 38.6 — 54.7 — —
*dppLSTM [108] 40.8 24 59.6 8 16
dppLSTM+Att [53] 43.8 15 -a - 15
WS-HRL [10] 43.6 17 58.4 13 15
UnpairedVSNysy, [77] 48.0 6 56.1 21 135
SUM-FCN [78] 47.5 8 56.8 19 135
SF-CVS [36] 46.0 11 58.0 16 13.5
MAVS [24] 40.3 26 66.8 1 13.5
SASUM i1y sup [96] 453 12 58.2 14 13
PCDLgyp [115] 43.7 16 59.2 10 13
CRSum [105] 47.3 9 58.0 16 12.5
Tessellation [43] 41.4 20 64.1 3 115
DQSN [118] — — 58.6 11 11
HSA-RNN [114] 441 14 59.8 7 10.5
ACGANyy, [34] 47.2 10 59.4 9 9.5
SUM-DeepLab [78§] 48.8 4 58.4 13 8.5
CSNetyy [41] 48.6 5 58.5 12 8.5
VASNet [23] 49.7 — 61.4 — —
*VASNet [23] 44.2 13 63.1 4 8.5
SMLD [12] 47.6 7 61.0 5 6
H-MAN [64] 51.8 2 60.4 7 4.5
SMN [89] 58.3 1 64.5 2 1.5
AC-SUM-GAN 50.8 3 60.6 6 4.5

Table 5: Comparison of our unsupervised method with supervised video summarization ap-
proaches on SumMe and TVSum. Rank denotes the relative ranking of the compared
methods. Methods marked with asterisk (*) have been evaluated also using the same
data splits with AC-SUM-GAN.

SumMe | TVSum
AC-SUM-GAN w/o VAE 53.0 61.1
AC-SUM-GAN w/o Discriminator | 53.3 60.7
AC-SUM-GAN w/o Actor-Critic 50.4 60.7
AC-SUM-GAN 54.5 61.4

Table 6: Ablation study based on the performance (F-Score (%)) of three variations of the
developed model, on SumMe and TVSum.

Page 27 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

Video Summarization Qualitative Analysis - A Summarization Example

In addition to the above reported findings, we illustrate the quality of the produced summaries
by the developed AC-SUM-GAN method with an example. For this, we used video #15 of
the TVSum dataset (titled as “How to Clean Your Dog's Ears - Vetoquinol USA") that is
used for the same purpose in a few other SoA works (e.g., [108] [41], 65, 104, 10, [34]), and
we compared the performance of AC-SUM-GAN against our previous methods (SUM-GAN-s|
and SUM-GAN-AAE) and the three approaches that were used when studying the established
evaluation protocol (dppLSTM [108], VASNet [23], DR-DSN [117]). Fig. [7] gives an overview
of the video after selecting one frame per shot (shot segmentation performed by KTS) and
presents the results for the examined techniques. In each case, the gray bars denote the
averaged human-annotated importance scores for the frames of the video, the black vertical
lines within these bars correspond to the shot boundaries, and the coloured bars indicate
the selected key-shots for creating the summary. Moreover, for each method we provide an
illustration of the generated summary by selecting one representative keyframe from each one
of the major key-shots of the summary.

Vétoquinol Vetoqumol

---- --- : [Ve(ogui’.r:gyl

Overview of the video as a set of frames

dppLST™M VASNet
F-Score = 62.2 F-Score =75.2

. l“l Lo —nl lhl

DR-DSN SUM-GAN-s|
F-Score = 46.7 F-Score = 67.1

,_nn HI” |;|l l,“l

w/o VAE - 65.1

SUM-GAN-AAE AC-SUM-GAN w/o Discr. - 75.2
F-Score = 63.9 F-Score = 75.2 w/o AC-67.1
b l | l ‘ ‘ ‘ i l I \ = I | | ‘ ‘ ’ . ' 1 \

Figure 7: A key-frame-based overview (using one key-frame per shot), and example summaries
of six summarization methods on video #15 of the TVSum dataset (the first two
methods, dppLSTM and VASNet, are supervised, while the rest are unsupervised).
For AC-SUM-GAN, we also illustrate with coloured horizontal line segments under
the corresponding bar-chart, the result of each of the three variations of it discussed
in the ablation study.

These results show that the developed unsupervised AC-SUM-GAN method generates the exact
same summary with the VASNet algorithm, which is one of the best-performing supervised
summarization approaches on TVSum. And the superiority of these two algorithms is proven
also in terms of F-Score (see values plotted under each method's name). The generated
summary focuses on the main event of the video (i.e., the cleaning of the dog's ears), but it

Page 28 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

also contains shots with diverse visual content from other parts of the video. In this way, it
provides a comprehensive presentation of the entire story, with a special focus on its main event.
With regards to other techniques, our previous attention-based SUM-GAN-AAE algorithm also
selects some fragments of top importance, ending up to a similar visual result with AC-SUM-
GAN and VASNet (the difference in terms of F-Score is due to the imperfection of the KTS
segmentation algorithm, which erroneously splits one shot in more shots; and, in this example,
such a fragment that is visually similar with the best selection ended up in the summary). The
three remaining methods focus less on the main event, with DR-DSN losing the point of the
video and choosing many frames that mainly contain graphics.

Finally, to examine the impact of each of the main components of the AC-SUM-GAN archi-
tecture on the summarization outcome, at the bottom-right part of Fig. [7| we illustrate also
the selected fragments by each different variation of the AC-SUM-GAN model. The coloured
line segments right below the bar-chart show that the variation without the Discriminator
produces the exact same summary with the AC-SUM-GAN method. The other two variations
lead to different and slightly worse summaries. The model without the AC misses the selec-
tion of the most important part of the video, while the model without the VAE also misses
some important part of the main story by instead selecting a video part that is of lower im-
portance according to the ground-truth annotations. These findings are consistent with the
findings of the conducted ablation study and indicate the positive impact of the introduced
AC model in the summarization performance. Concluding, the above discussed findings of
the conducted qualitative analysis confirm the competitiveness of the AC-SUM-GAN method,
that was documented through the quantitative evaluations. And once again, they highlight
the achieved improvement on automatic video summarization over the last 14 months of the
ReTV project.

2.2. Smart Cropping

2.2.1. Problem Statement and State of the Art

Videos created for traditional TV and desktop computer monitors are typically consumed in
landscape aspect ratios (16:9 or 4:3). With the rise of mobile devices (mobile phones and
tablets), these historical aspect ratios do not deliver the best user experience. Due to the
widespread usage of such devices many video sharing platforms now dictate the use of certain
aspect ratios for videos that are to be published on their platform. ReTV’s Content Wizard
application considers multiple target vectors for publishing and needs to comply with the
standards of each of these vectors. A straight-forward approach for transforming a video to
a different aspect ratio would involve either static cropping of content or padding the frames
with black borders to reach the target aspect ratio. However, static cropping can often lead to
significant loss of visual content which in certain cases might even be the center of attention,
while padding shrinks the original video content by introducing large borders in the output
video. In both cases, ultimately the results are often unsatisfactory.

The video aspect ratio transformation algorithms can be divided in three main categories: 1)
warping, 2) cropping, and 3) seam carving. Warping methods [61} [98| 95, [29] 93] 94, 59|,
instead of resizing the entire image uniformly, determine scaling factors in a content-adaptive
way: the image is divided using a grid and important image regions are left untouched while
scale factors are applied to other less important areas. Cropping techniques [84] [81) 63, 62,
88, [44] select a rectangular area in the image/frame and discard visual content outside of it.
Seam carving algorithms [1], 6, 79, 80, 28, [76, 46, [45] remove seams of uninteresting pixels,
i.e., connected paths of pixels inside the image are discarded with the most transparent way to

Page 29 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

the human eye. We should highlight here that, to our knowledge, there is not an established
benchmark dataset publicly available for testing video aspect ratio transformations.

It is easily understood that when applying warping or seam cropping to the frames of a video,
apart from undesirable artifacts, the original video content is distorted significantly. For ex-
ample, let us consider a video frame depicting two persons at the edges of the image and the
content between being a uniform background. A warping method would shrink the uniform
area while a seam cropping method most probably entirely remove this area. Such strong se-
mantic distortions are unacceptable for ReTV applications, therefore we choose to implement
a cropping method for video aspect ratio transformation.

Most cropping methods rely on modelling human's eye visual attention to decide the size and
location of the final crop window. Older visual saliency techniques 32, [37] 85, 52| [40] utilize
low-level image features such as intensity, contrast, color, edges. With the advent of deep
neural networks (DNN) and their successful application on many computer vision tasks, most
recent visual saliency methods [87, [48| 73| [19] employ some sort of DNN.

For ReTV applications we need a method with two main characteristics: 1) the algorithm must
be faster than real-time, i.e., the return times must be well below the duration of the input
video, and 2) all regions of interest in the video frames must be included. Since none of the
discussed literature methods or off-the-self application solutions (such as Google's AutoFIi[ﬂ)
offer a way to rate the quality of the cropped version, we decided to construct our own
technique that satisfies the aforementioned characteristics and fits well within the already
mature framework of ReTV components. Section details our algorithm. Acknowledging
that a cropped version of a video cannot always retain all regions of interest of the original
video, and in order to achieve the second desired characteristic of our method, we also discuss
a way to quantify the quality of the cropped version and resort to alternative approaches for
transforming a video to a different aspect ratio, in the cases where the results of cropping are
unsatisfactory.

2.2.2. Smart Cropping Approach

We developed a smart-cropping method that can adjust the video summaries to a target
aspect ratio different than that of the original video. This is conducted by detecting the area
of the main interest/attention and following it throughout the whole video. Our algorithm can
also quantify the quality of the resulting smart-cropped video summary and can automatically
decide when a padded version of the original summary video would be preferred.

The smart-cropping module receives as input the set of frames comprising the segments of the
original video that the video summarization method has selected for forming a video summary.
We start by excluding the rows and columns of video frames of which the variance of all frame
pixels throughout the whole video is below a threshold ¢;. This way we detect and exclude
regions at the edges of the video frames which are either a black border or where the visual
content is changing little to none throughout the video. We set ¢, = 30, to compensate for
black or still areas that may have an amount of noise, e.g., due to heavy compression or
multiple re-encodings of the video.

Following this, we calculate the video crop window that abides to the target aspect ratio,
specifically the dimensions of the final crop window. To minimize the loss of visual content,
we select the maximum dimension of the crop window as the minimum dimension of the

4ht'cps ://ai.googleblog.com/2020/02/autoflip-open-source-framework-for.html

Page 30 of

https://ai.googleblog.com/2020/02/autoflip-open-source-framework-for.html

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

ow ow/oh =16/9 o ow/oh = 4/5
A fw/fh = 4/5 fw/fh = 16/9
fh =oh fh <oh
fh
fw < ow fw = ow
fh
oh oh
W . Orig?nal frame
fw m Final frame
(a) (b)

Figure 8: Calculation of the final crop window size that respects the target aspect ratio when
transforming a video from a) 16:9 to a 4:5, b) 4:5 to a 16:9 aspect ratio. Blue color
denotes the original frame, while green color denotes the final (transformed) frame.
The grey arrows depict the dimension along which the final frame can move within
the original frame.

original frame size. Employing this practice, we retain as much as possible of the original video
content and also simplify the algorithm’s computations since we only have to calculate the
movement of the crop window in one dimension. For example, when transferring a 16:9 video
to a 4:5 target aspect ratio, the final crop window height will be equal to the original video's
height and the crop window will be able to move only in the z-axis (Fig. a). Similarly, when
transferring a 4:5 video to a 16:9 target aspect ratio then the final width will be equal to the
original video's width the crop window will be able to move only in the y-axis (Fig. b).

To find the center of the viewer's attention in a frame, we compute a salience map of the
frame. A salience map is a gray-scale image of the same size to the original frame that
shows how much each pixel stands out from its neighbors - a measure of visual attention of
humans towards important information. The higher the value of a pixel the higher the salience.
For each of the input frames we compute the salience map by employing the UNISAL [19]
state-of-the-art visual saliency method.

We continue to eliminate regions of small salience by zeroing the pixel values of the salience map
that are below a pre-specified threshold. Note that even after the thresholding procedure, the
salience can be concentrated in a small region of the whole frame or be in the form of multiple
blobs. Aiming to select the main part of the viewer's focus, we cluster the coordinates of the
non-zeroed pixels’ locations in the salience map. To do so, we selected the HDBSCAN [68]
clustering algorithm due to its numerous merits for the specific type of application:

= HDBSCAN does not require pre-specifying the number of clusters - a particular trait for
our case since it is impossible to know how many (if any) salient blobs result from the
salience map inference stage.

» The clusters extracted by HDBSCAN can take any irregular shape of uneven size -
unlike other common clustering algorithms, e.g., K-Means, where clusters are more or
less spherical.

= HDBSCAN performs DBSCAN [47] over varying epsilon values, a crucial parameter of
the later algorithm. The results are then integrated to find a clustering that gives the
best stability over epsilon allowing the finding of clusters of varying densities. We have
no way of knowing the density of clusters we want to detect beforehand therefore tuning
the epsilon parameter in DBSCAN would be a tedious task.

» HDBSCAN forms clusters at dense regions of data points. Ignoring the low-density areas,
it can identify data points (i.e., pixel positions in our case) as outliers. Excluding these

Page 31 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

outliers from the rest of the smart-cropping procedure can further aid the discard of
scattered or spurious salient pixels.

After applying the clustering procedure, we select the cluster with the highest weight - expressed
as the sum of pixel values - and continue to zero the pixel values of the rest of the clusters
(as well as data points marked as outliers), producing a filtered salience map.

We go on to find the center of mass of the filtered salience map by performing K-Means with
k =1 on the set triplets of x, y position coordinates and pixel intensity values. Incorporating
the pixel intensity values in this process we make sure that brighter (i.e. more salient) pixels of
the salience map will have highest weight in the final outcome. We consider the position of K-
Means resulting cluster centroid as a single point center of the viewer's attention. In an effort
to speed-up the K-Means process we initialize the algorithm using the [z¢, ., v.| triplet as the
initial center of cluster, where x., y. are the x, y coordinates of the location of the salience
map's pixel with the maximum intensity value and v, is this maximum pixel intensity value.
We also significantly limit the number of iterations that the algorithm can perform.

Having a single point location where the viewer's attention is centered, we move on to fit
a temporary crop window to this center, to be able to compute a “coverage” score as the
ratio of the sum of all salience map pixels values to the values of pixels inside the temporary
crop window, as a means to quantify how much salient visual information is covered by the
temporary crop window. It is easily understood that the higher the value of the "coverage”
score across all frames of the video, the better the quality of the final product of the smart-
cropping procedure.

After the above described procedure has been conducted for all frames, we end up with a
time series of the locations of the center of the main attention as a result of its movement
throughout the video and a series of “coverage"” scores for each frame. If the mean “coverage”
scores of all frames is above a pre-specified t. threshold we proceed to process the time series
of the locations of the center. We consider each of the x and y coordinates independently
and apply a Butterworth fourth-degree low-pass filter at 3Hz (considering as sampling rate the
frame rate of the original video) in order to reject sudden movements. Consequently, we employ
the LOESS (locally weighted smoothing) method, a popular tool used in regression analysis,
to fit a smooth curve to the data points of x and y coordinates time series. Finally, we infer
the final crop window for each frame based on x and x coordinates and the calculated final
crop window size. The temporary crop window calculated earlier is discarded since this was
not computed on the smoothed times series (the sole purpose of that temporary crop window
was to be able to calculate the “coverage” score). In the case where the mean “coverage”
scores of all frames is below or equal to the t. threshold, we pad the video frames with zeros
(i.e., we add black borders) so as to reach the target aspect ratio. All various parameters of
low-pass filters and LOESS smoothing procedure were decided upon preliminary experiments
and visual inspection of the results. The t. threshold was set after specific experiments that
are reported in Section [2.2.4]

In an effort to further speed-up the whole process, and based on the fact that temporally-
closeby frames of videos most often present high visual similarity, we decided to skip the three
next consecutive frames for each frame we process. We interpolate the sparse time-series
of the attention’s center location, prior to the low-pass filtering process, in order to fill-in the
missing values resulting from this frame skipping process. Once again, the number of frames we
skipped was decided upon preliminary experiments and visual inspection of the results, noticing
negligible difference in the quality of the smart-cropping results. Results of all performance

Page 32 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

optimization efforts are reported in Section [2.2.4]

The described smart-cropping method in this section was deployed as a module in the VS
service and is employed after the generation of a video summary, if the user explicitly sets a
target aspect ratio in the call to VS. API details on the setting of this parameter are detailed

in Section 2.4.2

2.2.3. Implementation Details and Use

Smart-cropping was implemented using Python. All deep learning modules were employed using
the PyTorc}'E] open-source neural-network library version 1.5. All experiments were conducted
on Intel i5 or i7 PCs with 32 of RAM, running Windows 10, equipped with Nvidia GeForce
GPUs.

2.2.4. Results

As discussed in Section [2.2.1] to our knowledge there is no established benchmark dataset for
the task of video smart-cropping. To be able to test our approaches and the effect of adjusting
various parameters during the development of our algorithm, we formed a development/valida-
tion dataset by selecting 50 videos from the DHF1k dataset [02] as well as from YouTube. Our
selection criteria were devised with the goal to find a balanced set of both straight-forward and
challenging videos for the task at hand. We proceeded to generate two smart-cropped versions
for each video, one with target aspect ratio of 1:3 and another one with target aspect ratio of
3:1. We selected these target aspect ratios (despite not being used in real life applications)
in order to test our algorithm under extreme circumstances. All smart-cropped versions of
videos were manually evaluated with a “quality” score ranging from 1 to 5, with 1 being an
unacceptable cropped version of the video - mainly due to loss of significant visual content of
the original video - and 5 being a perfect cropped result of the original video.

In Figure [9] we plot the “coverage” score that our algorithm calculates against the manually
assigned “quality” score to the smart-cropped versions for all of the 50 videos in our manually
curated development/validation dataset. We observe that these two measures are related in
the sense that when our algorithm cannot fit a sufficient portion of the salient regions in the
smart-cropped video version (i.e. there is a low “coverage” score), then the quality of the
result will also be lacking, i.e. there will be also a low “quality” score. It is clear that by
setting t. = 0.76 all smart-cropped versions with “quality” equal to 1 and 2 will be discarded,
i.e., our method will instead choose to produce a padded version for each of these videos in
order to reach the target aspect ratio. At the same time, most of the rest of the cropped
versions will have “quality” score above 3. The detection of a good quality smart-crop result
and the automatic decision to produce an alternative padded version of the original video, was
our original intent as discussed in Section [2.2.1]

Aiming to avoid introducing an extra stage in the video summarization process that presents
heavy time-complexity, in Section we discuss our performance optimization efforts of
the whole smart-cropping process. In Table [7| we list all stages of our method and include
the ratio of the process time to the original video duration, before (second row of the table)
and after (third row of the table) applying any speed-up scheme. Of course, these timings
depend on the available hardware, especially the salience map inference stage which utilizes a
GPU. We notice the significant speed-up that the optimization efforts offer. The final achieved

5https ://pytorch.org/

Page 33 of

https://pytorch.org/

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

1.000 v
' l ®
o 0.750 ®
S) 0
@ [] ®
% o
[}
8 0.500 o ! S
2 ‘ !
3 8]
3 0250 ¢ °
0.000
1 2 3 4 5

"Quality" score

Figure 9: Scatter plot of “coverage” score against “quality” score for the 50 videos of our
development/validation dataset.

processing time is 55% of the video duration, which was deemed as an acceptable time budget
for the smart-cropping task.

Processing time
Stage (% of video duration)

Vi V2
Border detection 0.118% 0.120%
Crop window size calculation | <0.001% | <0.001%
Saliency map inference 111.782% 33.315%
Saliency map thresholding 0.862% 0.19%9
HDBSCAN 42.903% 11.709%
Center of mass calculation 13.137% 4.243%
“coverage” score calculation 3.581% 1.461%
Interpolation ~ 0.009%
Low-pass filtering 0.162% 0.158%
LOESS smoothing 1.001% 1.006%
Final crop window calculation | 0.009% 0.011%
Frames transforming 1.782% 1.918%
Total 229% 55%

Table 7: Average timings for each stage of our smart-cropping method.

We observe in Table [7] that the second most time demanding stage is that of HDBSCAN. One
could argue that skipping this stage would result to a further speed-up. However, looking at
the examples of Figs. [10} and [12] the importance of this stage becomes clear, since there
are multiple salient blobs and the designed filtering-through-clustering procedure manages to
select the blob of the main focus. In all of these examples, the first image depicts the original
frame. The second depicts the inferred salient map, the third image depicts the thresholded
salient map, while the fourth image depicts the filtered salient map as a result of applying
the clustering procedure. Finally, the fifth (right-most) image depicts the filtered salient map
overlayed on top of the original frame. For an indicative example see Fig[1I] where the UNISAL
model identified as salient areas the face of the person and a region of hands holding a camera
(in the lower left side of the original frame), resulting in two salient blobs (in the post-processed
center image of the figure). However, our cluster-and-filter procedure successfully discarded
the region containing the camera. Note that if the center of mass was calculated on the post-
processed image (instead of the clustering-filtered image, as our method dictates) the center
of attention would be calculated to be somewhere in the middle of these two blobs and thus

Page 34 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

none of the objects of interest would be included in the final smart-cropped video.

Figure 10: Example frame from processing the 700.AVI video of the DHF1k dataset. Notice
how the salient map contains a blob for each of the interviewed persons. After
employing the HDBSCAN clustering the filtered salient map contains only the face
with the highest salience, the one of the talking person in our case.

Figure 11: Example frame from processing the 722.AVI video of the DHF1k dataset. Note
how the clustering procedure filters the salient region in the lower left area of the
frame.

ovefidyed

b
f

Figure 12: Example frame from processing the 915.AVI video of the DHF1k dataset. Note
how the clustering procedure filters the second person in the background (in the
red uniform).

2.3. Text to Video Matching
2.3.1. Updated Problem Statement and State of the Art

Given a set of unlabeled video shots and an unseen textual query, the goal of text to video
matching, also known as ad-hoc video search (AVS), is to retrieve the most related video shots,
ranked from the most relevant to the least relevant shot for the query. In the context of ReTV,
text to video matching aids Content Recommendation as discussed in Section [3.3]

Early solutions to the AVS problem were based on large pools of visual concept detectors, and
NLP techniques for query decomposition in order to identify concepts in the textual queries. In
[67], a set of NLP rules and a variety of pre-trained deep neural networks for video annotation
were used in order to associate visual concepts with the provided textual queries. In [51], a
large amount of concept, scene and object detectors were used along with an inverted index
structure for query-video association.

Recent SoA approaches rely on deep neural networks for directly comparing textual queries and
the visual content in a common space [31]. Also, inspired by problems similar to AVS, e.g.,
cross-modal retrieval or visual question-answering, solutions that have been proposed for these
problems were modified and adapted to AVS. In [22], an improved multi-modal embeddings
system was proposed, together with a loss function that utilizes the hard negative samples

Page 35 of

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

of the dataset; this approach was adapted to the AVS problem in [8]. In [55], an improved
version of the image-to-text matching method of [16] was proposed for the AVS task. More
specifically, [55] used the method of [16] together with the triplet loss function of [22] and an
improved sentence encoding strategy. In [72], a weakly-supervised method was proposed to
learn a joint visual-text embedding space using an attention mechanism to highlight temporal
locations in a video that are relevant to a textual description. This mechanism was also used
for extracting text-depended visual features. Recently, the dual encoding network proposed
in [18] encodes videos and queries into a dense representation using multi-level encodings for
both text and videos and the improved loss function of [22]. In [25], the problem of video
retrieval was addressed by training three different networks using different training datasets,
and combining them by using an additional neural network.

2.3.2. Text to Video Matching Approach

To address the text to video matching problem, we developed an improved dual encoding
method designed for Ad-hoc Video Search. Inspired by the dual encoding network presented in
[18], we create a network that encodes video-caption pairs into a common feature subspace.
In contrast to [18], our network utilizes attention mechanisms for more efficient textual and
visual representation, and exploits the benefits of richer textual and visual embeddings.

Let V be a media item (e.g., an entire video or a video shot) and S the corresponding
caption of V. Our network translates both 'V and S into a new common feature space ®(-),
resulting in two new representations @ (V) and ©(S) that are directly comparable. For this,
two similar modules, consisting of multiple levels of encoding, are utilized, for the visual and
textual content respectively. Moreover, two new attention components are integrated into the
baseline network. The overall network architecture is illustrated in Fig. [13]

For every video three different encodings are created, ¢(V)!, ¢(V)?, ¢(V)3. We consider a
video or a video shot as a sequence of n keyframes V = {v1,v9,...,v,}, where each keyframe
vector v; is the output of a pre-selected hidden layer of a pretrained deep network, e.g., the
pool5 layer of Resnet [33] or Resnext [I00]. The first encoding is the global representation
of every video and is obtained by mean pooling the individual keyframe representations, as

follows: ¢(V)? :% v

) Pigiui miul H ,r-f'——\l
1 1 o o v
. R L e o)
: 1 1 1a 2 v A | I H | _ TN
3 Z ol 2 9 1B M| -
PMaida L5201, 28) & P . =)
L | 1|77 1 T R 2 Joint feature space
1 qo|! o o ! e !
. N2 2 | g 1 1
| 1 1 1 I o ! o®® °
1 1 1 1 : °
0, | aE . 'z | ‘er_e .
A vos| T2 8 g e
“Find shots of an . el v A 1 1 - e
. 3 9 o | =
adult person running —»| % b33 : > 2 2 a —k_ ; P
in a city street ” : — § | s 1 2 Hq .
— |)T\ & &) 3 I @(S)
\ /] H 1 U
—_——_—— s V==

A

Figure 13: The overall dual encoding network incorporating the self-attention mechanism in
both visual and textual modules. A pair of video+text is fed into the network
in order to be represented into a joint feature space. The dotted red rectangles
indicate the contributions of this work beyond [18]: the self-attention mechanisms,
and the multiple video/text encodings.

Next, the keyframe representation vectors {v1,v2,...,v,} are fed in a sequence of bi-directional
Gated Recurrent Units [I1] (bi-GRUs). The hidden state in time ¢ of a forward GRU is

Page 36 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

defined as h_t> = m(vt,m), and in the backward WJ as E = m(vt,m).
All GRU's hidden states are represented as a feature matrix Hy = [h1,ha,...,hy] , where
hy = concat(ﬁ,z). To obtain the second level of encoding, mean pooling of the h; values
is performed as follows: ¢(V)? = %2?21 ht.

Subsequently, a 1-d CNN is built and fed with the feature matrix Hy. A convolutional
layer C'onvldy,, is used, with r filters of size k. After applying ReLU activation and max
pooling to the layer's output, the ¢, = maxpool(ReLU(Convldy ,(Hy))) vector is pro-
duced. Multiple representations of the video are created, using different k = 2,3,4,5 val-
ues. The third-level video representation is the concatenation of the produced ¢ vectors:

P(V)3 = [c2,c3,c4,05).

Finally, the concatenation of the previously generated features is used as the global and multi-
level feature representation of a video:

¢(V) = BN(Wyconcatt(o(V)',¢(V)?,¢(V)?) + by)

where W, and b, are trainable parameters and BN a batch normalization layer.

Similar to the visual content encoding network, a multilevel encoding $#(S)!, ¢(S)2, ¢(S)3
is generated for the textual content. Given a sentence S containing m words, the ¢(S)!
representation is created by averaging individual one-hot-vectors {wy,wa,...,wn,}. Next, as
the second level of textual encoding, a deep network-based representation for every word is used
as input for the bi-directional GRU module, and similarly to ¢(V)2, $(S)? = % Yoy he.

Next, the feature matrix Hg of the textual bi-GRUs is forwarded into a 1-d convolutional layer
with filter sizes k = 2,3,4 and ¢(S)? is calculated similarly to ¢(V)? above. The final textual
representation is:

¢(S) = BN (Wconcatt((S)",6(S)%, 6(S)?) + bs)

Following [22], [71] and [18], the improved marginal ranking loss is used to train the entire
network.

Self-Attention Mechanisms

The 1-d CNN layer that is fed with Hg or Hy in the original network of [18] treats each
item of the words or frames sequence equally. Our target is to exploit the most meaningful
information from the textual and visual sequences, particularly the words with the highest
semantic importance and the keyframes which are more representative for a video shot. For this,
we introduce a self-attention mechanism [7][60] in each modality, in order to find the relevant
importance of each word in the input sentence, and to find important temporal locations in a
video-shot. An overview of this self-attention mechanism is illustrated in Fig. [14]

In the textual encoding part of the network, given the output of the bi-GRU Hg, the attention
model outputs a vector a:

a= softma:v(wsgtanh(WsleT))

where Wy is a trainable weight matrix of size d x 2u, where d is a hyper-parameter, 2u is the
size of a single bi-GRU unit and wgo a parameter vector of size d. The wso vector is extended

Page 37 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

in a z X d matrix Wgo for multi-head attention, by modeling z semantic aspects of the text,
as in [60], resulting in a weight matrix Ag:

Ag = softmam(ngtanh(WsleT))

The softmaz() is used for weight normalization, so that all the weights sum up to 1. Then,
the attention matrix Ag is multiplied with the initial Hg, resulting in matrix:

H; = AH;

Hjy is forwarded into the 1-d convolutional layer instead of the feature matrix Hg. This text-
based self-attention mechanism is denoted as Att in the sequel.

A similar self-attention mechanism, denoted as Atyv, is integrated in the visual encoding module.
In this case Hy is used for calculating the attention weighted matrix Ay, resulting in

H, = A H,

Dealing with such a demanding task, where typically the SoA methods achieve accuracy of
about 10—22% on different evaluation datasets, it is vital to exploit the advantages of different
signal encodings. Regarding the video module, two SoA deep neural network architectures
are used for frame feature extraction: the ResNext-101 [I00] and ResNet-152 [33] models.
Concerning the text module, the performance of the Word2Vec [70] model, as well as the
bidirectional transformer-based language model BERT [15], are examined. We also examine
early fusion (as shown in Fig. i.e., concatenation of encoding vectors, versus late fusion
(i.e., merging of ranked lists, each obtained using a different text-visual encoding pair), for
jointly exploiting the multiple encodings.

Self-Attention

\
I
7

=

>
W

=
S

[y ——————

>

-
B)

[
\

RSP s A s Hat

=

Figure 14: An illustration of the employed self-attention mechanism.

Complying with the agreed ReTV architecture, all text to video embeddings (both from videos
and text) are extracted in the Video Analysis service of WP1 using three alternative end-
points (see Section 6.2 of D1.3). The permanent storage and comparison of video and text
embeddings comparison is conducted by GENISTAT, as discussed in Section [2.4.2]

2.3.3. Implementation Details and Use

All implementations regarding text to video matching were completed using the PyTortkﬂ open-
source neural-network library version 1.3. Also the deep learning framework MXNet v1.4.1 was

6https ://pytorch.org/

Page 38 of

https://pytorch.org/

RelV

D3.3 Content Adaptation, Re-Purposing and Scheduling

Table 8: Results (MXinfAP) of the proposed networks and their combinations, compared with
the baseline [18]. The best results for each dataset are indicated with bold, while
those that are worse than the baseline are given in parenthesis. All reported train-
ing/inference times are in hours, for a single setup (should be multiplied by 6 for the
Combination of 6 setups) and for processing the whole training/test dataset. These
numbers are not to be confused with query execution time; this is approximately 30
sec. for all but the late fusion methods, and 4 times higher for the latter.

|. Combination of 6 setups Il. Best of 6 setups Avg. Inference
AVS16 AVS17 AVS18 | AVS16 AVS17 AVS18 | training | time
(a) W2V 4 ResNext-101 [I8] 0.142 0.2189 0.1187 | 0.14574 021281 0116572 tim®e 1.72
(b) (a) + Att 0.1544 02264 0.1233 | 0.147702 022080 0.1183E| 753 1.81
(¢) (a) + Atv 0.1497 02274 0.1231 | 0.146408 0216500 0.1237400| 7.52 1.80
(d) BERT + ResNext-101 01532 02248 0.1194 | 0157692 022880 (0.1126 6.7 1.70
(e) W2V + ResNet152 0.1464 (0.2033) (0.0986) | 0.150750 (0.2062 I (0.1043 6.64 171
(f) BERT + ResNet152 0.1501 (0.2141) (0.103) | 0.146402 (0.208 (0.009)2| 668 1.71

Early fusion of W2V +

(8) BERT 4 ResNext101 4 01614 02312 0122 | 0.1544T2 0.23270 0180 | 91 1.73
ResNet-152

(h) (g) + At 01635 0.2427 0.1266 | 0.159402 0244412 01262 921 1.84

(i) (g) + Atv 01637 02352 01265 | 0158302 023072 012658 9.2 1.84

., Late fusion of (a), (d),
NONG)

Late fusion of (b),

0.1658 0.2414 0.1206 0.1683 0.2499 0.1272 26.7 6.84

(k) (d)+Att, 0.1663 02413 01240 | 0.1658 0.2469 0.1283 276 7.01
(e)+Att,(f)+Att
Late fusion of (c),

() (d)+Atv, (e)+Atv, 0.1655 02415 01245 | 0.1693 0.2576 0.1288 | 27.4 7.00
(f)+Atv

t Adam optimizer * RMSprop optimizer 1 learning rate: 1 x 1074 2 learning rate: 5 x 107° 3 learning rate: 1 x 107°

used for video feature extraction. The experiments were conducted on an Intel i7 3770K PC
with 32GB of RAM, running Ubuntu 18, equipped with an Nvidia GeForce GPU (GTX 2080
Ti) as well as additional PCs with similar specifications.

2.3.4. Results

We trained our network using the combination of two large-scale video datasets: MSR-VTT
[102] and TGIF [58]. We evaluate its performance on the official evaluation dataset of the
TRECVID AVS task for the years 2016, 2017, and 2018, i.e., the IACC.3 test collection consist-
ing of 4,593 videos and altogether 335,944 shots. As evaluation measure we use mean extended
inferred average precision (MXinfAP), which is an approximation of the mean average preci-
sion suitable for the partial ground-truth that accompanies the TRECVID dataset. As initial
frame representations, generated by a ResNext-101 (trained on the ImageNet-13k dataset) and
a ResNet-152 (trained on the ImageNet-11k dataset), we use the publicly-available features
released by [55]. Also, two different word embeddings are utilized: i) the Word2Vec model
[70] trained on the English tags of 30K Flickr images, provided by [17]; and, ii) the pre-trained
language representation BERT [15], trained on Wikipedia content.

For comparison reasons, we used the publicly available code of [18] to re-train the network
with the same configuration and features we use in our methods. This method is indicated as
W2V+ResNext-101 in Table 8| and is used as a baseline for our experiments. Overall, three
general network architectures are trained, i) the baseline network, ii) the network with the
text-based attention mechanism, and iii) the network with the visual-based attention. Each
network is trained using one or both available word embeddings (i.e., Word2Vec [a.k.a. W2V

Page 39 of

D3.3 Content Adaptation, Re-Purposing and Scheduling

for short] and BERT) and one or both visual representations (i.e., ResNext-101 and ResNet-
152). The Combination of 6 setups col