
Enhancing and Re-Purposing TV Content for Trans-Vector Engagement (ReTV)
H2020 Research and Innovation Action - Grant Agreement No. 780656

Enhancing and Re-Purposing TV Content
for Trans-Vector Engagement

Deliverable 3.2 (M20)
Content Adaptation, Re-purposing and

Scheduling
Version 1.0

This document was produced in the context of the ReTV project supported by the European
Commission under the H2020-ICT-2016-2017 Information & Communication Technologies

Call Grant Agreement No 780656

D3.2 Content Adaptation, Re-purposing and Scheduling

DOCUMENT INFORMATION

Delivery Type Report

Deliverable Number 3.2

Deliverable Title Content Adaptation, Re-purposing and Scheduling

Due Date M20

Submission Date August 31, 2019

Work Package WP3

Partners GENISTAT, CERTH, MODUL Technology

Author(s)

Basil Philipp, Krzysztof Ciesielski (GENISTAT),
Konstantinos Apostolidis, Evlampios Apostolidis,
Alexandros Metsai, Eleni Adamantidou, Damianos
Galanopoulos, Vasileios Mezaris (CERTH), Lyndon
Nixon (MODUL)

Reviewer(s) Martin Gordon (RBB)

Keywords Content Adaptation, Content Re-purposing, Video
Summarization, Content Scheduling

Dissemination Level PU

Project Coordinator MODUL Technology GmbH
Am Kahlenberg 1, 1190 Vienna, Austria

Contact Details

Coordinator: Dr Lyndon Nixon (nixon@modultech.eu)
R&D Manager: Prof Dr Arno Scharl
(scharl@weblyzard.com)
Innovation Manager: Bea Knecht (bea@zattoo.com)

Page 2 of 54

mailto:nixon@modultech.eu
mailto:scharl@weblyzard.com

D3.2 Content Adaptation, Re-purposing and Scheduling

Revisions

Version Date Author Changes

0.1 30/6/18 V. Mezaris,
K. Apostolidis Created template and ToC

0.2 29/7/19
E. Apostolidis,
E. Adamantidou,

A. I. Metsai

Added parts related to learning-based video
summarization

0.3 30/7/19 K. Apostolidis Added parts related to non-learning-based video
summarization

0.4 31/7/19 D. Galanopoulos,
K. Apostolidis Added parts related to text-to-video matching

0.5 15/8/19 K. Ciesielski,
B. Philipp Added section on viewer profiling

0.6 19/8/19 L. Nixon Added update on Metadata and Vocabulary
Interoperability

0.7 23/8/19 M. Gordon QA review

0.8 26/8/19 K. Ciesielski,
K. Apostolidis Post-QA revision

0.9 27/8/19 L. Nixon Corrections

Page 3 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both.

This deliverable reflects only the authors’ views and the European Union is not liable for any
use that might be made of information contained therein.

Page 4 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Contents

1 Introduction 8

2 Metadata and Vocabulary Interoperability 9

3 Viewer Profiling 10
3.1 Data . 10
3.2 The Modelling Approach . 10
3.3 Results and Discussion . 11

4 Content Adaptation and Re-Purposing 15
4.1 Problem Statement . 15
4.2 State-of-the-Art Survey . 16

4.2.1 Video Summarization . 16
4.2.2 Text to Video Matching . 18

4.3 Non-learning-based Video Summarization Approach 18
4.4 Learning-based Video Summarization Approaches 22

4.4.1 Unsupervised Video Summarization Using Stepwise, Label-based Gen-
erative Adversarial Learning . 22

4.4.2 Unsupervised Video Summarization Using Attention-driven Generative
Adversarial Learning . 26

4.5 Text to Video Matching . 28
4.6 Results . 29

4.6.1 Video Summarization . 29
Experimental Setting . 29
Preliminary Study on Datasets . 30
Evaluation Outcomes . 31

4.6.2 Text to Video Matching . 35
Experimental Setting . 35
Evaluation Outcomes . 36

4.7 Video Summarization Component, Workflow and API 36
Start Call . 37
Render Call . 39
Status Call . 39
Results Calls . 39
Component Testing and Software Quality Assessment 41

5 Content Recommendation and Scheduling 42
5.1 Content Recommendation Service Overview 42
5.2 Content Scheduling Service Overview . 43
5.3 Audience Profiling for the Content Recommendation 43
5.4 Future Work and Conclusions . 47

6 Conclusion and Outlook 48

Page 5 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

EXECUTIVE SUMMARY

In the ReTV project, the objective of our work in WP3 is to deliver components for content
adaptation, re-purposing, scheduling and recommendation based on the annotations, metrics
and predictions of WPs 1 and 2. To support viewer-level recommendation and audience tar-
geting, we define viewer profiles (T3.2). Since the data produced in the different WPs may
follow different metadata models and vocabularies, we also ensure interoperability through the
definitions of mappings of properties and values across metadata specifications (T3.1). This
deliverable reports on the final results of these first two tasks, which are a precondition for the
subsequent work in implementing re-purposing, recommendation and scheduling components.
This deliverable also reports on the progress in providing those content re-purposing, recom-
mendation and scheduling components (T3.3 and T3.4). These form integral parts of the TVP
and are used in all scenarios defined in WP5 and WP6 where they will enable the automatic
creation of summaries and finding the optimal publishing strategies for content.

Page 6 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

ABBREVIATIONS LIST

Abbreviation Description

API
Application Programming Interface: a set of functions and procedures that allow
the creation of applications which access the features or data of an application or
other service.

CNN Convolutional Neural Network: a type of artificial neural network.
DCNN Deep Convolutional Neural Network: a type of artificial neural network.

DCT
Discrete Cosine Transform: a transformation that expresses a finite sequence of
data points in terms of a sum of cosine functions oscillating at different
frequencies.

DTR Dilated Temporal Relational unit: a convolutional module for capturing temporal
dependencies on various time windows.

EPG
Electronic Program Guides: menu-based systems that provide users of television
with continuously updated menus displaying broadcast programming or
scheduling information for current and upcoming programming.

HTTP
POST/GET

Types of method in the Hypertext Transfer Protocol (HTTP). The HTTP POST
method is used to send data to a server to create/update a resource. The HTTP
GET method is used to request data from a specified resource.

GAN Generative Adversarial Network: a deep learning architecture where two separate
neural networks compete against each other.

GRU Gated Recurrent Unit: a type of recurrent neural network.

IPTV Internet Protocol Television: is the delivery of television content over Internet
Protocol (IP) networks.

JSON JavaScript Object Notation: a data-interchange format.
KTS Kernel Temporal Segmentation: a video fragmentation algorithm.
LSTM Long Short Term Memory networks: a type of recurrent neural network.
MSE Mean Squared Error.

MTL Multi-task learning: a field of machine learning in which multiple learning tasks
are solved at the same time, exploiting commonalities and differences across tasks.

OTT
Over The Top: content providers that distribute streaming media as a standalone
product directly to viewers over the Internet, bypassing telecommunications that
traditionally act as a distributor of such content.

RDF Resource Description Framework: a method for conceptual description or
modeling of information that is implemented in web resources.

REST Representational State Transfer: an architectural style that defines a set of
constraints to be used for creating web services.

RNN Recurrent Neural Network: a type of an artificial neural network.

TVoD Transactional Video on Demand: a distribution method by which customers pay
for each individual piece of video on demand content.

URL Uniform Resource Locator: a reference to a web resource that specifies its
location on a computer network and a mechanism for retrieving it.

VAE Variational Auto-Encoder: a generative neural network that models a data
distribution.

Page 7 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

1. Introduction

This document summarizes the current state of the WP3 tasks in the first phase of the ReTV
project (month M20). Section 2 discusses task T3.1 (Metadata and Vocabulary Interoper-
ability) led by MODUL Technology. Section 3 discusses task T3.2 (Viewer Profiling) led
by Genistat. Section 4 discusses task T3.3 (Content Adaptation and Re-purposing) led by
CERTH. The outputs of all tasks are preconditions for the progress in the task on content
recommendation and scheduling (T3.4), which is reported in Section 5. Finally, Section 6
contains conclusions and the future outlook for all WP3 tasks.

Page 8 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

2. Metadata and Vocabulary Interoperability

We have provided for a shared metadata model and vocabulary space in the work reported
in deliverable D3.1, where we defined mappings between ReTV’s content annotation model
(D1.1) and other standards and specifications for Web multimedia and TV audiovisual content.
In data collection, we have already implemented such a mapping in the case of Europeana
Data Model (EDM) so that content items from the Europeana API can be ingested into
our metadata repository. With regards to promoting best practices in media annotation, we
presented ReTV at the EBU Metadata Network meeting (June 2019), the community which
also uses and promotes the EBU Core metadata model. Shared vocabularies are also used as
targets of annotation, as reported in deliverable D1.2 (Semantic Knowledge Base or SKB).
We use the SKB as a local knowledge graph for both named entities (drawn from DBPedia
and WikiData) and for lexical keywords (drawn from OmegaWiki), with links to external and
globally unambiguous identifiers.

Page 9 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

3. Viewer Profiling

As we stated in the previous deliverable (cf. D3.1), the crucial aspect of the viewer profiling
is to make sure that all relevant entities recognized by prediction models (i.e. users behaviour
and interests, as well as TV content, events and social media activities) are described in the
same feature space and can be related to each other (for instance, that we can model the
relationship between user interests and content categories or sport event disciplines). In this
vein, all of the works for viewer profiling in the reported time period were executed in parallel
with the recommendation models related tasks (cf. section 5). Specifically, we carried out a
series of experiments to verify the hypothesis that implicit audience segmentation learned by a
recommendation model can be used to create explicit segmentation, when the latter is required
(e.g. for a direct targeting a subset of users with a given piece of advertisement).

However, it is worth stressing here that in most ReTV recommendation scenarios it is sufficient
to operate on the implicit segmentation learned by a predictive model. Such implicit segmen-
tation follows the requirement mentioned at the beginning of this section, i.e. it describes each
user’s segment in the feature space defined by content-related attributes. In other words, it is
a behavioral segmentation (implicitly) reflecting users interests. One of the advantages of such
an approach is that once the richer, extensive content annotation is integrated, the feature
space describing user preferences is also automatically extended, reflecting additional aspects
of interests. One example could be face recognition, when we can automatically discover that
user is interested in particular actors or politicians. Another advantage of our approach is that
it is a fuzzy segmentation, i.e. each user can belong to multiple segments with varying level
of segment similarity. In our opinion, this is a more precise segmentation description, since
naturally behavioral segments are not always disjoint (e.g. sport fans segment can overlap
with some celebrity fans segment).

In the following sections we describe experiments that show the relationship between the
implicit segmentation derived from the recommendation model (cf. section 5) and the explicitly
measured users interest in various TV content categories.

3.1. Data

We took Zattoo users session data (the subset of 60k Swiss users over 3 months) for 7
channels of the public Swiss TV. For the first segmentation experiment, we didn’t use any user
or content related attributes. The only input information was the interaction between the user
and the content (i.e. the programs watched). We measured the strength of the user-content
information as the fraction of the program that has been watched (the number between 0
[instant zapping] and 1 [program fully watched]). For the evaluation part (but not for the
model itself) we used EPG information about program categories. The goal was to verify
whether the model is able to discover user interests patterns even though this information was
not explicitly provided as an input.

3.2. The Modelling Approach

We treat segmentation as a counterpart to the recommendation model that tries to match
content pieces (trailer, programs, social web posts etc) to the user/segment profile. We want
user profiles and segment profiles to be fully exchangeable. I.e. described in the same space of

Page 10 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 1: Inter-cluster variance (SSE) vs. the number of clusters

attributes. The advantage of such an approach in the ReTV context is that we can use more
detailed information when available (e.g. for registered TV channel users), and more granular,
privacy-preserving, segment information otherwise (e.g. for social media).

We built a collaborative filtering model based on non-negative matrix factorization. Thus, every
user is represented by a vector in latent, low-dimensional space. NNMF model (D = W ∗H
1) can be treated as clustering model itself, where each row of H matrix represent individual
user, and latent vector represents cluster membership (fuzzy clustering). We wanted to be
more elastic with the number of segments (clusters), so we build 10-dimensional latent NNMF
model and then clustered latent vectors representing users with K-Means algorithm. It should
be noted that any other algorithm can be used here (esp. fuzzy C-Means, since we want to
allow user to belong to multiple segments, or hierarchical algorithm if we need a hierarchy
of segments). We used crisp clustering here only for simplicity of the presentation of results.
Figure 1 presents the inter-cluster variance with respect to the different number of clusters.
Its value stabilizes somewhere between 60 and 90 segments (much higher than latent space
dimension).

3.3. Results and Discussion

As briefly mentioned earlier, for the evaluation part (but not for the model training), we built
an explicit user profile, based on EPG data. The goal was to verify whether implicit information
expressed only by user-content information (i.e. training data for clustering model) was also
able to capture explicit attributes that can describe resulting segments.

After matching of the content (programs) with EPG information and aligning it with the data
used to train the model (user-content interactions), each user was described by the distribution

1https://en.wikipedia.org/wiki/Non-negative_matrix_factorization

Page 11 of 54

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 2: Trailers: user engagement measured as duration spent on a given content category

Figure 3: Kids programs: user engagement measured as duration spent on a given content
category

of the EPG categories with which he/she interacted. In other words, we calculated the total
duration spent on various EPG categories and normalized the values.

Below we present only results for the EPG categories. However there are definitely more implicit
patterns in the data that can be used to describe user segments, such as:

Page 12 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 4: Sport: user engagement measured as duration spent on a given content category

Figure 5: Sport ads: user engagement measured as duration spent on a given content category

• geographical location

• language

• typical viewing time (e.g. prime-time audiences) or day/day-of-week

• size and the structure of the household (esp. kids/no kids)

Page 13 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 6: Football: user engagement measured as duration spent on a given content category

• socio-demographic attributes (age, gender)

The next step would be to execute similar analyses for viewing times, geolocation, socio-
demographics and household structure. Such attributes can be used in the Content sWitch
scenario (better targeting of trailers and ads, both segment-level and individual user level) as
well as in the 4u2 chatbot scenario (e.g. segment-based recommendation for social media) -
for more about the consumer scenarios, see deliverable D6.2.

For the sake of simplicity, we present results for 20 segments only (even though the optimal
number of clusters is higher, as mentioned above).

For the Content sWitch scenario, we observe that only a few segments are in general interacting
with trailers (cf. Figure 2).

We observe a few segments interested in kids content. We can assume that users from
households with kids are included mostly in these segments (cf. Figure 3).

Sport is in general the most popular category, however we observe differences between segments
(cf. Figure 4).

Not surprisingly, ads related to sport are correlated with interests in sport content (cf. Figure
5).

Going deeper into individual sport disciplines, we see not only that overall engagement differs
between the sport disciplines, but also that there are segments more interested in one discipline,
and segments more interested in multiple disciplines. For example in Figure 6, when comparing
the distribution to the one shown in Figure 4, we can observe that segments 1 and 17 are
generally interested in sport but less in football.

In conclusion, we see the close resemblance between the explicit and implicit segmentation
learnt by the recommendation model. In section 5 we describe the underlying model in more

Page 14 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

detail.

4. Content Adaptation and Re-Purposing

4.1. Problem Statement

The technologies developed in this task are focused on two directions: video adaptation and
video content re-purposing. This adaptation is based on the characteristics of the vector that
the video’s shorter version will be published in, as well as the attributes of the target viewer
segment, leveraging information from task T3.2 of ReTV.

Regarding the first direction, the video content is adapted by generating shorter versions
utilizing video summarization methods which aim to provide a short visual summary that
encapsulates the flow of the story and the essential parts of the full-length video. According
to [57], there are two fundamental types of video summaries: static video summary (a.k.a.
video storyboard), which is a collection of video frames extracted from the original video, and
dynamic video skimming, which is a set of short video clips, joined in a sequence and played as
a video. One advantage of a video skim over a set of key-frames is the ability to include audio
and motion elements that offer a more natural story narration and potentially enhance both the
expressiveness and the amount of information conveyed by the summary. Moreover, it is often
more entertaining and interesting to watch a skim rather than a slide show of key-frames [40].
On the other hand, key-frame sets are not restricted by timing or synchronization issues and,
therefore, they offer much more flexibility in terms of organization for browsing and navigation
purposes [6, 59]. Such technologies were developed for the purpose of video adaptation and
are described in this deliverable.

The provision of a concise summary that adequately conveys the main concept of the video
enables the viewer to quickly understand the main messages conveyed by it without having
to watch the entire video. Given the plethora of video content on the Web and the limited
time that a viewer can spend on deciding whether to watch or skip a video, an effective
video summary enables the time-efficient browsing of large video collections and increases the
potential of a video to be consumed. Given the above, video summarization aims to provide
a short visual summary that encapsulates the flow of the story and the essential parts of the
full-length video.

The application domain of automatic video summarization is fairly wide and includes the use
of such technologies by video sharing platforms that constantly aim to higher viewer engage-
ment and content consumption. Furthermore, video content management systems of media
organizations exploit video summarization techniques to allow effective indexing, browsing and
retrieval of video content. Last but not least, techniques for parameterizable/personalizable
video summarization that take into account the viewers’ needs, enable effective sharing of
video content across different channels (e.g. 4G/5G WANs, local LANs, etc. with various
data transmission capacity) and presentation devices (e.g. desktops, laptops, tablets, smart-
phones), in forms (storyboards, skims, excerpts) that are tailored to the needs of the targeted
audiences, thus facilitating content presentation and consumption.

Regarding the second direction, video content is re-purposed by enhancing it with external
information and advertisements based on the target viewer’s segment and vector characteristics.
To this end, we developed a method for text-to-video matching. Such a method can be applied

Page 15 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

for the targeted advertisement placement and advertisement replacement requirements of the
ReTV project (i.e., matching the description of the ads with regions of the video suitable for
ad placement).

4.2. State-of-the-Art Survey

4.2.1. Video Summarization

Several approaches were proposed over the last couple of decades, for addressing the task of
video summarization. For a long time, the relevant research area was dominated by methods
that select the key parts of the video (either key-frames for static video summaries, or key-
fragments for generating dynamic video skims) based on the extraction and processing of
low-level visual features from the video frames. These methods include: algorithms that
assess the visual similarity over sequences of frames (e.g. [65, 68, 34, 15]; clustering-based
techniques that group frames according to their visual similarity and extract key-frames from
the clusters’ centres (e.g. [23, 12, 68, 7, 1, 10]); dictionary learning approaches which aim
to approximate the gap between low-level visual features and high-level visual semantics, and
perform semantic-driven selection of the video summary parts (e.g. [17, 41, 42, 74]); and
visual attention modeling that imitates the human attention mechanism that is used to spot
the most important parts of the video for generating the summary (e.g. [29, 36, 14, 71]). Early
supervised machine learning methods aimed to: capture the underlying frame selection criterion
from human-created summaries to produce video summaries that meet human expectations
(e.g. [24, 26]); exploit auxiliary information, such as the video title or metadata, to extract
the semantically-related parts of the video (e.g. [33, 55, 51]); and directly optimize multiple
objectives for video summarization, such as representativeness, relevance, importance, diversity,
uniformity, storyness and actioness (e.g. [25, 38, 16]).

In addition to the above, and based on the processing capacity of the modern Graphic Pro-
cessing Units and the rise of deep network architectures, a number of deep learning video
summarization approaches were introduced, with the majority of them being trained in a su-
pervised manner, i.e. using ground-truth summaries. In this context, the learning efficiency of
Convolutional Neural Networks (CNN) was exploited for the needs of supervised video sum-
marization. In [50] video summarization is addressed as a weakly-supervised learning problem
and solved via a flexible deep 3D convolutional neural network architecture that learns the
notion of importance using only video-level annotation. [54] tackles video summarization as
a sequence labeling problem and performs key-frame-based video summarization using fully
convolutional sequence models. [19] combines a soft, self-attention network with a two-layer
fully connect network to process the CNN features of the video frames and compute frame-level
importance scores that are subsequently used for key-fragment selection. [48] uses deep video
features for encoding various levels of content semantics (e.g. objects, actions, scenes) and
then, a deep neural network that maps videos and their descriptions to a common semantic
space is jointly trained with associated pairs of videos and descriptions. Following, a summary
is created by applying a clustering-based process on the extracted deep features from the video
segments.

Other supervised techniques utilize advanced variations of Recurrent Neural Networks (RNN)
to capture the temporal dependency over sequential data (Long Short-Term Memory (LSTM)
units [27] and Gated Recurrent Units (GRU) [9] have shown remarkable performance in vari-
ous problems that are inextricably linked to the temporal domain, such as speech recognition

Page 16 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

and text transcription), several RNN-based architectures have been proposed for video sum-
marization and represent the current state-of-the-art on this research field. [66] is the first
work that introduced the use of LSTM to model the temporal dependency among frames
and compute frame-level importance scores, while the diversity of the video summary was
enhanced by modeling the pairwise frame repulsiveness using the Determinatal Point Process
algorithm. [30] formulates video summarization as a sequence-to-sequence learning problem
and proposes an LSTM-based encoder-decoder network with an intermediate attention layer
to obtain video summaries. Another approach, that combines attention with generative adver-
sarial learning is described in [22]. The typical encoder-decoder seq2seq model is replaced by
a special attention-based seq2seq model that defines the different fragments of the video. The
model is combined with a 3D-CNN classifier (the discriminator of the adversarial framework)
which guides the training by judging whether a fragment is from a ground-truth or a generated
summary. [20] goes one step further by introducing an architecture with memory augmented
networks, which utilizes an external memory to record visual information of the whole video
with high capacity. Thus, video summarization is tackled in a more global manner that involves
the extraction of knowledge about the temporal interdependency across the entire video. [72]
proposes a 2-layer LSTM architecture where the first layer extracts and encodes data about the
video structure and the second layer uses this data to define the key-fragments of the video.
This work is extended in [73] to exploit the shot-level temporal structure of the video and com-
pute shot-level confidence scores for producing a key-shot-based summary of the video. [69]
describes a Dilated Temporal Relational (DTR) Generative Adversarial Network (GAN), where
the generator contains LSTM and DTR units to exploit long-range dependencies at different
temporal windows, and the discriminator is trained via a 3-player loss to distinguish between
the learned summary and a trivial summary consisting of randomly selected frames.

Contrary to the above supervised approaches, a few unsupervised methods for automatic video
summarization were also proposed. [43] addresses video summarization by selecting a sparse
subset of video frames that optimally represent the input video. For this, a deep summarizer
network is trained to minimize the distance between training videos and a distribution of their
summarizations through a generative adversarial framework. [63] follows a similar approach
that aims to maximize the mutual information between the summary and the original video. A
bi-directional LSTM network performs frame selection and a variational auto-encoder is used
to learn video representation and acts as generator. Finally, an information-preserving metric
between the summary and the original video is estimated by a trainable couple of discriminators
and a cycle-consistent adversarial learning objective. [67] performs a similar comparison with
[43] but in an abstract semantic space, based on the intuition that, if the summary preserves
the important and relevant information in the original video, then the two embeddings (in
the abstract space) are similar. [75] formulates video summarization as a sequential decision-
making process and develops a (encoder-decoder) deep summarization network that learns to
produce diverse and representative video summaries via policy-gradient reinforcement learn-
ing and a novel diversity-representativeness reward function. [70] suggests an approach that
extracts key motions of appearing objects in the video, and learns to produce a fine-grained
object-level video summarization in an unsupervised and online manner. The authors of [54]
describe an unsupervised variation of their model, that aims to increase the visual diversity
of the selected key-frames. Finally, [53] introduces a new formulation to learn video summa-
rization from unpaired data. For this, sports highlights, movie trailers and other professionally
edited summary videos available online are collected and used to guide a generative adversarial
process that aims to learn a mapping function of a raw video to a human-like summary.

Page 17 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

4.2.2. Text to Video Matching

Image-to-text matching has been an active research direction in the multimedia research com-
munity for many years. This particular problem deals with content from different modalities,
thus a common solution is the transformation of the typical image/video and text representa-
tions into a new common embedding space, in which the similarity between image and text
can be directly measurable. Recent approaches address the problem by using dual networks to
embed both images and text into the new latent space, e.g., in [58] authors propose to learn
the common latent space using coupled inputs and class regression.

An important driver of scientific development in image-to-text matching, specifically focusing
on video (rather than still images), has been the Ad-hoc Video Search task (AVS) of TRECVID.
In the AVS task, the majority of the state-of-the-art approaches depend on the available set of
visual concept detectors. The input videos are annotated by these detectors and the textual
queries are decomposed using linguistic analysis in order to be correlated with the detectors.
In [44] multiple pre-trained DCNNs are used to detect visual concepts of interest in the video
content and a set of complex linguistic rules are used to extract meaningful concepts for a
specific query. More recent approaches utilize the power of deep neural networks in both
textual and visual component. The advantage of these approaches is that they do not depend
on the usage of several and heterogeneous visual concept detectors. They directly encode
both visual and textual content in a common latent space. In [13] a network consisting of fully
connected layers and RNN-based layers (Gated Recurrent Units) along with different textual
representations is used in order to embed sentences into the visual spaces of the images. In
[18] a method for learning a visual-semantic embedding for cross-modal retrieval is presented
by exploiting hard negatives examples and ranking loss functions in order to improve the
performance of cross-modal retrieval.

4.3. Non-learning-based Video Summarization Approach

In the course of the ReTV project, and up to its 20th month, several different versions of
video summarization methods were introduced and continuously adapted to newly presented
challenges and requirements. This continuous effort can be outlined in three different milestone
versions of our video summarization method: one that is based on semantic clustering (M6), a
second one that ranks the video shots according to ReTV specific criteria and select segments
from the top-ranked shots (M12), and finally a more elaborate learning-based one (M20).
Each version was designed based on the feedback of several rounds of tests conducted by
ReTV partners. In this section the non-learning-based versions (i.e., 1st and 2nd versions) are
discussed, while in Section 4.4 the learning-based approach is examined.

In M6 of the ReTV project, a first baseline version of video summarization method was intro-
duced. This method utilized the video fragmentation module of the Video Analysis (VA) service
of WP1 to segment the video to sub-shots and select a single key-frame for each sub-shot.
Then, using the concept-based annotation module of the VA service, semantic tags represent-
ing high-level concepts of the TRECVID-SIN video annotation concept pool [49] were assigned
to the selected key-frames (the interested reader is referred to Section 4.2.3 of D1.1 regarding
details on the concept-based detection method used for this). The inferred probabilities of the
323 concepts for each key-frame are treated as the feature vector of the key-frame, which in
turn is used as input to the Affinity Propagation clustering algorithm [21]. For each resulting
cluster, the key-frame which is closest to the centroid of the specific cluster is selected. The

Page 18 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

clustering-based selection of key-frames is temporally sorted according to the position of the
key-frames in the original video and then stitched together to produce the final summary of
the video, in the Graphic Interchange Format (GIF) file format.

Table 1: Summary of the feedback collected from ReTV partners that tested the first version
of the video summarization service.

Point
ID Description

#1.1
The static summarization format (i.e., a compilation of static key-frames) does not
suit the ReTV project’s requirements. Instead, a summarization format where the
summary is comprised of actual video segments should be introduced.

#1.2

Instead of relying on the number of clusters estimated by the Affinity Propagation
algorithm for the length of the summary, the user must be able to set a desired target
duration. This is particularly important, since different summaries have to be
generated for each considered target vector where they will later be published.

#1.3
Video segments with visual effects (e.g., TV news introductory animated graphics) or
with overlaid text (e.g., lower third text banner found in TV news videos) should be
avoided.

#1.4 Video segment which depict an anchorman or anchorwoman, TV news studios and TV
news commentators should be avoided.

#1.5 Scenes were the camera does a close-up of a person speaking should be avoided.

#1.6 “Clean” key-frames frames should be preferred, i.e., video key-frames/segments with
blurred content should be excluded.

#1.7 Scenes which repeat information already included in the summary should be excluded.

Following a first round of tests on the baseline video summarization method, and in accor-
dance with the collected feedback (from the test done in WP6 as well as internal unofficial
tests between ReTV partners), a new version of the video summarization method was de-
signed based on shot ranking. According to this method, the video is segmented to shots
using again the video fragmentation module of the VA service, and each shot is ranked with
a value r ∈ [0,1]. The lower the r value, the more likely is the shot to be included in the
summary. To rank each shot we use a variety of measures to meet the requirements col-
lected from the testing of the previous summarization method. Specifically, to avoid selection
of shots with visual effects (point #1.3), we utilize the concept detection module of the
WP1 VA service, summing the probability scores of concepts Synthetic_Images, Junk_Frame,
graphic, Network_Logo, Overlaid_Text, Scene_Text, Text_labeling_people, Text_On_Arti-
ficial_Background from the SIN concept pool. Our intuition is that the higher the probability
score of these concepts for a shot, the higher will be the shot rank, thus the less likely to be
included in the summary. Similarly, to avoid selection of shots with content related to specific
parts of a TV news program (point #1.4), we take into consideration the probability scores of
concepts Anchorperson, Commentator_Or_Studio_Expert, Studio_With_Anchorperson, Fe-
male_Anchor, Male_Anchor, Female_Reporter, Male_Reporter from the SIN concept pool.
To avoid selection of “talking heads” shots (point #1.5), we utilized the probability scores
of concepts Face, Female-Human-Face-Closeup, Head_And_Shoulder, Speaking_To_Camera
from the SIN concept pool. In response to point #1.6 of the feedback, we introduced the
computation of variance of the laplacian of each frame, a widely used method in the field
of computer vision, to measure the blurriness of an image. To avoid selection of shots with
blurry content we take into consideration the maximum value of this blurriness measure of all
frames in the shot. Additionally, aiming to satisfy point #1.6 for moving content, i.e., avoid
the selection of shots with extreme camera movement that might result in blurry content be-
ing included in the summary, we introduced the computation of Edge Change Ratio (ECR)

Page 19 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

measure for all frames and we take into consideration the maximum value of the ECR measure
of all frames in the shot.

The aforementioned procedure results in a ranked list of shots. The shot with the lowest rank
is selected as a candidate to be included in the summary and is removed from the ranked list.
We check if the candidate shot is visually similar to the set of already selected shots that will
be included in the summary (point #1.7). To assess the visual similarity of shots we make
use of the max pooled features of intermediate layers of the Places365 model, employed in
the concept-detection module of the WP1 VA service and check whether the distance of two
shots is above a pre-defined min_visual_distance threshold. Then, two different pre-defined
thresholds, min_shot_duration and max_shot_duration are utilized, with the intend to not
include very short or very long shots in the summary. The value of min_shot_duration was
initially set to 1 seconds, while the value of max_shot_duration was set to 3. If the candidates
shot’s duration is greater than the min_shot_duration threshold and lower than the max_-
shot_duration threshold then the whole shot is included in the summary. If the candidates
shot’s duration is greater than the max_shot_duration then we select a max_shot_duration
seconds segment of the shot for which its frames exhibit the minimum sum of blurriness and
ECR measures, in an attempt to select the part of the shot with the most “clean” content (as
defined in point #1.6). The procedure is repeated until the user-defined time budget for the
summary is exhausted. Performing the summarization process on shot level, the generation of
a dynamic summary (i.e. a skim video) is achieved (point #1.1).

Table 2: Summary of the feedback collected from ReTV partners that tested the second
version of the video summarization service.

Point
ID Description

#2.1 A query-based summarization approach would help generate alternative versions of
summaries for different target vectors and different viewer segments.

#2.2 A multi-video summarization approach would be useful specifically for NISV, e.g.,
generating a single summary for multiple video documentaries that concern biking.

#2.3
The rhythm of some generated summaries was characterized as “quite snappy”,
namely the shots were changing much too quickly. Since, this behaviour is desirable
for certain scenarios, a user-defined parameter to control this should be introduced.

#2.4
For certain use-case scenarios, in the developed web graphical user interface when the
user navigates over a thumbnail of a video, then a short version of the video summary
must play.

#2.5 For certain use-case scenarios, a professional user must be able to re-organize an
automatically generated summary suggestion, depending on his/her personal taste.

#2.6 The ability to include subtitles and background music in a video summary would be
desirable.

After releasing the above described summarization method as a Video Summarization (VS)
service, several rounds of subsequent tests took place. The further feedback of the ReTV
content partners and the analysis of the corresponding technical requirements can be summa-
rized in the following points (a summary of the feedback is also given in Table 2: Based on
the requirements of point #2.1, the summarization method was extended with the ability to
take into consideration a list a concept IDs from the adopted concept pools of ReTV. The
algorithm creates a second ranked list, in a manner similar to how the ranked list is constructed
for satisfying the first round of points. The lists are then combined by taking the geometric
mean of the two ranks for each shot. This way, we achieve a query-based summarization ap-
proach, i.e. assigning more weight to the shots that contain the concepts of the user-provided

Page 20 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

list. Similarly, in response to point #2.2 the summarization method was extended with the
ability to receive multiple videos as input, considering the sum of shot sets of all videos as a
sole video to produce a single summary. It should be noted that in the case of multi-video
summarization, the chronological order of selected segments within the video is kept, while the
order of the videos is not kept, i.e., videos are re-arranged based on their fitness to be included
in the summary.

In response to point #2.3, a user-defined parameter that adjusts the rhythm of segments in the
summary was introduced. In essence this parameter is a multiplier of the max_shot_duration,
i.e., the maximum allowed duration of a shot segment that is selected to be included in the
summary. Setting this parameter to a value well below 1 will result in the max_shot_duration
threshold to be decreased and a summary with fast alternating segments will be generated.
Setting this parameter to a value well above 1, will result in a summary whose segments will
be longer, i.e., a summary with a slower pace of alternating segments. Regarding point #2.4,
we extended the summarization algorithm to also generate a short version of the summary,
by utilizing only the top three ranked shots, with a limited time budget of up to 6 seconds.
This short version of the summary is referred to as preview in the following. Additionally, we
select the key-frame of the lowest-ranked shot of it as a thumbnail. Note that, since all three
outputs of the VS service, i.e. the summary, the preview and the thumbnail, start with the
same (lowest ranked) shot, we make sure that the user has a smooth experience in the user
interface in which the summary will be employed. For example, consider the following scenario:
a user sees the thumbnail of a video; if she/he navigates the mouse pointer on the thumbnail,
the preview will start to play; if she/he clicks on the thumbnail, the summary will start to play.
Both the summary and the preview will start with content that is visually very similar to what
the thumbnail depicts.

In response to point #2.5, a re-arrangement of the workflow of the summarization method was
extensively discussed and realized. Specifically, after selecting the segments that the summary
is comprised of, the VS service returns a summary script in the form of a JSON file, instead
of the actual video summary file. This JSON file (i.e., summary script) contains an array with
the start and end times of each selected segment. The summary script can be transferred to a
web-page with a graphical user interface where the user can modify the selected segments and
re-submit the script to a different endpoint of the VS service. This will in turn render the final
summary to a video file. The API details for this workflow are analyzed in Section 4.7.

Finally, Comment #2.6 was discussed in ReTV meeting in Thessaloniki and it was decided
that such features will be made available by the front-end that utilizes the VS service.

Table 3: Open issues for summarization.

Point
ID Description

#3.1 The core story must be traceable. Video segments which do not support the core story
should be excluded.

#3.2 The summary must recognize the story of the video. The viewer must not feel as
though relevant parts were left out.

#3.3 Certain summaries show uninteresting segments.

After all the feedback collected and analysed, and the corresponding adjustments and exten-
sions on the implemented method, there are still some open issues (Table 3); It is evident
that these revolve around a method being able to “understand” the “story” of the original
video. Thus, research on a more elaborate method that takes into consideration in a better

Page 21 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

way the temporal relation of frames was decided. Our efforts led to the implementation of a
learning-based summarization approach and an extension of it, both of which are presented in
the following sections.

4.4. Learning-based Video Summarization Approaches

4.4.1. Unsupervised Video Summarization Using Stepwise, Label-based Generative
Adversarial Learning

Several methods have been proposed to automate video summarization, and the researchers’ fo-
cus was recently attracted by deep learning architectures. In this direction, annotated datasets
were built to facilitate training and evaluation. However, since video summarization is a
highly-subjective task, we argue that supervised learning approaches, which rely on the use
of a single ground-truth summary, cannot fully explore the learning potential of such archi-
tectures. Hence, we focused on developing an unsupervised learning-based method for video
summarization.

The starting point of our work is the unsupervised method of [43]. This algorithm selects
the video key-frames by minimizing the distance between the deep feature representations of
the original video and a reconstructed version of it based on the selected key-frames. For
this, a deep representation of the entire video frame sequence is created with the help of a bi-
directional LSTM, which assigns a weight to each frame, and a variational auto-encoder (VAE).
The former is used to capture the long-term dependencies over sequences of frames in both
forward and backward direction. The latter is used to reveal the underlying structure of the
frame/key-frame features (in its encoding part) and produce another representation of the video
by drawing samples from the computed latent space (in its decoding part). The difficulty in
defining a suitable threshold regarding the similarity between the reconstructed and the original
video, directed Mahasseni et al. to the generative adversarial framework and the integration of
a trainable discriminator network. The ultimate goal of this approach was to jointly train the
frame selector and the variational auto-encoder in order to maximally confuse the discriminator,
i.e. decrease discriminator’s confidence in distinguishing the original from a reconstructed
video, a condition that denotes a highly representative key-frame collection.

Building on this method, we scrutinized features of the architecture and the training process
that could be fine-tuned to improve the model’s performance. For this, we were based on a
publicly available PyTorch implementation of a variation of this architecture [8], that was used
for evaluating the performance of SUM-GAN on the summarization of 360° videos (see [37]).
This variation contains a linear compression layer right before the frame selection component
of the architecture. In the updated model (see Fig. 7), given a video of T frames and focusing
on the tth frame of this video, xt represents the CNN feature vector, x′t denotes the com-
pressed feature vector, st refers to the computed importance score from the frame selector,
wt corresponds to the weighted feature vector (st ⊗ x′t), and x̂t relates to the reconstructed
feature vector by the variational auto-encoder.

In addition to the added linear layer, this variation follows a 3-step incremental training ap-
proach that updates specific parts of the network in each step. In particular, differently to
the immediate update of the entire model based on the computed losses after a single forward
pass of the architecture (see Alg. 1 in [43]), the implemented process:

• performs a 1st forward pass over the entire model, computes the Lreconst, Lprior and

Page 22 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 7: The developed SUM-GAN-sl architecture.

Lsparsity losses, and updates only the frame selector, the encoder and the linear com-
pression layer during the 1st backward pass (top part of Fig. 8);

• performs a 2nd forward pass of the partially updated model, computes the Lreconst and
LGAN losses, and updates only the decoder and the linear compression layer during the
2nd backward pass (middle part of Fig. 8);

• performs a 3rd forward pass of the updated model, computes the LGAN loss, and updates
the linear compression layer and the discriminator during the 3rd backward pass (bottom
part of Fig. 8);

The aforementioned losses are computed similarly to [43]:

Lreconst =
∥∥ϕ(x’)−ϕ(x̂)

∥∥2 (1)

where ϕ(x’) is the output of the last hidden layer of cLSTM for compressed feature vectors of
the original video (x’ = {x′t}Tt=1) and ϕ(x̂) is the output of the last hidden layer of cLSTM for
the feature vectors of the summary-based reconstructed video (x̂ = {x̂t}Tt=1).

Lprior =DKL(q(e|x)||p(e)) (2)

where p(e) is a prior over the unobserved latent variable, x is the observed data, q(e|x) is
the probability of observing e given x, and DKL denotes the Kullback-Leibler divergence. For
efficient training we employ the re-parameterization trick proposed in [35].

Lsparsity =

∥∥∥∥∥∥ 1
T

T∑
t=1

st−σ

∥∥∥∥∥∥
2

(3)

where T is the total number of video frames and σ is the regularization factor, a tunable
hyper-parameter of the model.

LGAN = log(p(x’)) + log(1− p(x̂)) + log(1− p(x̂p)) (4)

Page 23 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

where p(x’), p(x̂) and p(x̂p) are probability scores (computed at the soft-max output of the
discriminator) representing the discriminator’s confidence when classifying the original video,
the generated summary and the uniform summary respectively.

Figure 8: The different parts of the architecture are trained through a 3-step, incremental
procedure that updates specific components of the model in each step. Updated
components during a backward pass are indicated by dark-coloured boxes and solid
line in the backpropagation arrow.

Given the above, we examined a different training strategy for the adversarial part of the
model. The introduced learning approach was utilized in [52] for unsupervised representation
learning with deep convolutional GANs, a method used for image generation. Driven by the
effectiveness of this approach on training a network to generate realistic images from white
noise, we transfer this methodology in our context. Our aim is to find a better equilibrium
point between the generator and the discriminator, which means a better reconstruction of
the video from the combination of the weighted frames and the learned distribution of data
by the variational auto-encoder of the architecture. So, instead of using the LGAN loss of the
original SUM-GAN model, we follow a label-based approach, where label “1” is assigned to
the original video and label “0” to the video summary. Given these labels, we introduce the
following two losses:

LORIG = (1− p(x’))2 and LSUM = (p(x̂))2 (5)

The LORIG is used to minimize the Mean Squared Error (MSE) between the original video
label and the computed probability when the discriminator is fed with the original video.
Respectively, the LSUM is used to minimize the MSE between the summary label and the
computed probability when the discriminator is fed with the summary-based reconstruction of
the video. Based on these losses, the training of the discriminator is performed in a stepwise
manner, as depicted in Fig. 9 (top part). First, we pass the compressed feature vectors of the
original video (x′t, t ∈ [1,T]) through the discriminator (forward pass), calculate LORIG and
then calculate the gradients (backward pass). Secondly, we pass the original video through
the summarizer to create the reconstructed video (x̂t, t ∈ [1,T]), forward the latter to the
discriminator, calculate LSUM and then accumulate the gradients from both the original video

Page 24 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

and the summary-based reconstructed one, with another backward pass. With the gradients
accumulated, we call a step of the discriminator’s optimizer. This incremental process enables
a more fine-grained computation of the discriminator’s gradients (compared with the training
policy used in SUM-GAN), and helps the discriminator develop higher discrimination efficiency,
thus performing better during the classification.

For training the generator, we introduce the following loss:

LGEN = (1− p(x̂))2 (6)

The LGEN is used to minimize the MSE between the original video label and the computed
probability when the discriminator is fed with the summary-based reconstruction of the video.
By constantly trying to reduce the sum of Lreconst and LGEN , the generator aims to confuse
the discriminator and make the summary-based reconstruction of the video indistinguishable
from the original one.

Figure 9: The stepwise, label-based training of the adversarial component of our model. Top
part corresponds to the Discriminator and bottom part to the Generator.

Given the above described training strategy, the randomly generated summary used in the
original SUM-GAN model to regularize learning of the discriminator is not needed any more
in our variation. The authors of [43] claim that the use of the randomly generated summary
enhances the discriminator’s ability to distinguish between the original video and a summary-
based reconstruction of it. Nevertheless, through this approach the discriminator learns to
classify the random summary in the same class with the generated summary, thus restricting
the discriminator’s ability to make the distinction between an actual video summary and a
randomly generated one. Based on this reasoning, we omit the use of a random summary for
training our model.

Given a trained model, the components responsible for generating a summary for an unseen
video are the linear compression layer and the frame selector. In particular, the CNN fea-
tures of the video frames pass through the aforementioned components and an importance
score is computed for each frame. Based on these scores, the key-fragments of the video are
selected via the following procedure: the video is segmented using the KTS algorithm [51]
(other approaches for shot or subshot segmentation, e.g. [2] and [3], could be used too); then,
fragment-level importance scores are calculated by averaging the importance scores of each
fragment’s frames; and finally, the summary is generated by selecting the fragments that max-
imize the total importance score provided that the length of the summary does not exceed

Page 25 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 10: Going from the typical variational auto-encoder (left side) to the variational atten-
tion auto-encoder (right side).

15% of the original video duration. The latter requirement is adopted by several video sum-
marization approaches (e.g. [30, 55, 66, 75]) and met by solving the following optimization
problem:

max
N∑
i=1

ai · bi, s.t.
N∑
i=1

ai · li ≤ 0.15 ·L, ai ∈ 0,1 (7)

where N is the number of fragments, L is the length of the original video, 0.15 defines the
upper limit for the summary duration, and given the i−th fragment of the video, ai is a binary
value that indicates whether the fragment is selected or not, bi is the computed fragment-
level importance score, and li is the length of the fragment. The latter is the 0/1 Knapsack
problem.

4.4.2. Unsupervised Video Summarization Using Attention-driven Generative Ad-
versarial Learning

The idea behind the use of an attention mechanism for video summarization is to mimic
the way humans select the most representative pieces of a data sequence through a gradual
decision-making approach that bases the selection of a piece of data on the previously seen
ones. Inspired by [30], we examined two alternatives for integrating an attention mechanism
into the SUM-GAN-sl model.

The first alternative involved the direct insertion of this mechanism within the variational
auto-encoder of the architecture. A recent work (see [5]) that aimed to build a method for
natural language modeling investigated different settings for this integration and described the
bypassing effect that the traditional (deterministic) attention mechanism has on the VAE’s
functionality, since the latter has no impact in the process. To avoid this effect the authors
of [5] proposed a variational attention mechanism where the attention vector is also modeled
as Gaussian distributed random variables. Hence, the typical VAE is extended as shown in
Fig. 10, in order to compute a latent variable also for the attention vector and use it when
generating the decoded representation of the input sequence. Based on the above, we extended
the SUM-GAN-sl model with variational attention, forming the SUM-GAN-VAAE architecture.
In particular, the attention weights of each frame were considered as random variables and a
latent space was computed by the variational auto-encoder for these values, too. Finally, the
decoding part of this component was modified in order to update its hidden states based on
both latent spaces (computed for the encoder’s output and the attention values) during the
reconstruction of the video.

The second alternative examined for integrating an attention mechanism to the SUM-GAN-sl
model is based on the supervised attention-based encoder-decoder architecture of [30]. Since

Page 26 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

deterministic attention bypasses the functionality of the VAE, the latter is no longer needed,
and thus, it is entirely replaced by an attention auto-encoder (AAE) network. The overall
architecture of the new model (called SUM-GAN-AAE) is presented in Fig. 11. Assuming
again a video of T frames and based on the notations from Section 4.4.1, st, t ∈ [1,T] refers
to the computed importance score by the frame selector, wt, t ∈ [1,T] corresponds to the
weighted feature vectors (st ⊗ x′t, where ⊗ denotes element-wise matrix multiplication) that
are passed to the encoding part of the attention auto-encoder, and x̂t, t ∈ [1,T] represents
the feature vectors of the reconstructed video.

Figure 11: The developed SUM-GAN-AAE architecture.

Focusing on the introduced AAE module of the architecture (see Fig. 12), after feeding the
weighted feature vectors to the encoder, the attention component receives the encoder output
V =

{
νt, t ∈ [1,T]

}
and the previous hidden state of the decoder ht, then computes the

attention weights et using a score function and finally applies a soft-max function to normalize
them (at). In the first step of the decoding process, the attention component uses the hidden
state of the last encoder’s step (He) instead of the previous hidden state of the decoder.
Afterwards, the at weights are multiplied (the multiplication is denoted by “MM” in Fig. 12)
with the encoder’s output, producing the context vectors ν′t, t ∈ [1,T]. The latter are fed
to the decoder, which combines them with its output from the previous frame yt−1, so as to
reconstruct the initial video. The score function used in our implementation is a multiplicative
one:

eit = ν∗iWaht−1 (8)

where ν∗i is the transposed encoder output for the i− th video frame, ht−1 is the hidden
state of the decoder for t − 1, Wa is a learnable parameter and eit is the relevance score
before the normalization. The final attention weights ait are computed based on the following
normalization:

ait = exp(eit)∑n
j=1 exp(ejt)

(9)

Our work on learning-based summarization has been submitted for publication to scientific

Page 27 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 12: The attention auto-encoder. Decoding is performed in a stepwise manner which
involves the corresponding step of the attention component.

conferences.

4.5. Text to Video Matching

For the purposes of text to video matching, we built a fully automatic dual encoding deep neural
network architecture. Following the method that has been proposed in [13], we implemented an
architecture that learns to represent a textual instance (e.g. a sentence) and a visual instance
(i.e. a video key-frame) into a common feature space. Therefore, the correlation between a
given text si and an image Imj is directly comparable in the common space.

The Ad-hoc Video Search (AVS) problem is formulated as follows: given a text query Q and a
set of keyframes X = {xi}Ni=1 extracted from a video collection V = {vj}Mj=1, where a number
of keyframes xi ∈ R

d has been extracted from each shot of the videos in the collection. Our
goal is to retrieve for query Q the k keyframes from X that are most closely related to it.

We built a deep neural network that projects a natural language textual sentence s and a
video keyframe xi into the common feature space φ(x) ∈ R

d. For that the s is encoded
into three different components: i) bag-of-words, ii) word2vec [46] and, iii) GRU-based se-
quential modeling. The bow representation is expressed as Vs

bow = [vw1 ,vw2 , . . . ,vwc], where
vwi is the occurrences of the word wi in s and c in the size of the specific vocabulary.
Word2Vec represents every word wi of a phrase or other piece of text as a continuous vector
Vwi
word2vec = [v1,v2, . . . ,vn] in a low dimensional space. Finally, the GRU-based VGRU rep-

resentation inputs the vt word embedding vector at the time t and the previous hidden state
ht−1 and outputs the updated ht. Then, the three different representations are concatenated

Page 28 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

V(s) = [Vbow;Vword2vec;VGRU] and the new representation is forwarded in a sequence of k
fully connected layers fci(s) = σ(Wifci−1(s) + b1) where fc1(s) = σ(W1ms(s) + b1). The k
layer outputs the final representation φ(s).

We use a pre-trained DCNN model to extract features for every keyframe, specifically, the
Resnet-152 trained at the ImageNet 11k dataset. Each keyframe is represented by the flattened
output of the pool5 layer. Then, similarly to sentence representation, each I is forwarded into
a fully connected layer fc1(x) = σ(WII(x)+bI). The output of the fc1(x) is at the common
space φ(x).

Given a sentence representation φ(s) and a visual representation φ(x) we use the Mean Squared
Error (MSE) as the objective function in order to train our framework into the common space.
The MSE loss achieves better performance in contrast to other cost functions (i.e. marginal
ranking loss)[13]. The framework is trained to minimize the overall MSE loss is defined
as:

argmin
θ

∑
(s,x)∈D

`mse(s,x;θ)

, where `mse(s,x;θ) = (φ(s)−φ(x))2 for a sentence-image pair (s,x), D the set of all available
pairs (s,x) and θ stands for all trainable parameters.

To develop the AVS framework we used the Keras2 open-source neural-network library with the
TensorFlow backend3. The Root Mean Square Propagation (RMSProp) optimizer was used
for training in mini-batches of 128 sentences-images pairs. RMSprop is a fast and very popular
optimizer that is suitable for large datasets and mini-batch learning. Gradient explosion is a well
known problem in recurrent networks and the gradients could became NaN due to numerical
overflow. To avoid gradient explosion, gradients were clipped by their l2 norm.

4.6. Results

4.6.1. Video Summarization

Experimental Setting

The performance of the developed learning-based video summarization approaches is evaluated
on the SumMe [26] and TVSum [55] datasets. SumMe includes 25 videos of 1 to 6 min.
duration, covering multiple events from both first-person and third-person view. The authors
of the SumMe dataset selected a team of 15−18 anonymous users as an annotators team. Each
video has been annotated by this team in the form of key-fragments, and thus is associated to
multiple fragment-level user summaries. Moreover, a single ground-truth summary in the form
of frame-level importance scores (calculated by averaging the key-fragment user summaries
per frame) is also provided. TVSum contains 50 videos of 1 to 5 min. duration, capturing 10
categories of the TRECVid Multimedia Event Detection dataset. The authors of the TVSum
dataset selected a team of 20 anonymous users as an annotators team. Each video has been
annotated by this team in the form of frame-level importance scores, while once again, a single
ground-truth summary in the form of frame-level importance scores (computed after averaging
all users’ scores) is available.

2https://keras.io/
3https://www.tensorflow.org/

Page 29 of 54

https://keras.io/
https://www.tensorflow.org/

D3.2 Content Adaptation, Re-purposing and Scheduling

A large portion of the videos in SumMe and TVSum datasets are comprised of a single shot.
During preliminary attempts on evaluating the early non-learning-based versions of our video
summarization approaches we observed the very poor performance, by means of F-Score in the
specific dataset. This is due to two factors: (i) these non-learning-based video summarization
approaches are shot-based, thus they fail to analyse single-shot video content, and (ii) these
early versions where developed strictly abiding to the defined ReTV requirements. We argue
that they should not be evaluated in the context of a benchmark procedure designed for the
video summarization research field. Therefore Section 4.6.1 solely deals with the evaluation of
the developed learning-based video summarization approaches.

Regarding our evaluation approach and for fair comparison with other approaches, we adopt the
key-fragment-based evaluation protocol from [66] (adopted by the majority of SoA approaches;
see Tables 6 and 7). The similarity between an automatically generated (A) and a user summary
(U) is computed by the F-Score (as percentage), where (P)recision and (R)ecall measure the
temporal overlap (∩) between the summaries (|| ∗ || denotes duration):

F = 2× P ×R
P +R

× 100, with P = A∩U
||A||

and R= A∩U
||U ||

(10)

So, given a video, we compare the automatically generated summary with the available user
summaries for this video, and compute an F-Score for each pair of generated and user summary.
Then, we average the computed F-Scores (for TVSum) or keep the maximum of them (for
SumMe, following [25]) and end up with the final F-Score for this video. The computed
F-Scores for the entire set of testing videos are finally averaged to capture the algorithm’s
performance. This protocol is directly applicable on SumMe, as user annotations are already
available in the form of key-fragments. For TVSum, frame-level annotations are converted
to key-fragment annotations following [55, 66]. The videos are segmented using the KTS
method [51], and fragment-level importance scores are computed by averaging the scores of
each fragment’s frames. Video fragments are ranked based on the computed scores and the
Knapsack algorithm is used to select the key-fragments and form the summary, such that it
does not exceed 15% of the video duration.

Last but not least, for fair comparison with a group of methods ([43, 30, 60, 69, 63]) that
follow a different evaluation protocol, which involves the comparison of the generated video
summary only with the single ground-truth summary for that video, we report our models’
performance based on this approach too.

Videos were downsampled to 2 fps. For fair comparison with other works, feature extraction
was based on the pool5 layer of GoogleNet [56] trained on ImageNet. The linear compression
layer reduces the size of these vectors from 1024 to 500. Each component of the architecture
is comprised of 2-layer LSTM, with 500 hidden units, while as in [43] the frame selector is
a bi-directional LSTM. Training is based on the Adam optimizer and the learning rate for all
components but the discriminator is 10−4; for the latter one is 10−5. Finally, we followed the
standard 5-fold cross validation approach and we report the average performance over the 5
runs.

Preliminary Study on Datasets

Aiming to get some insights about the used datasets, we examined the following aspects:

• the efficiency of a randomly generated summary (frames’ importance scores defined based
on a uniform distribution of probabilities and the experiment was performed 100 times);

Page 30 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

• the human performance, i.e. how well a human annotator would perform based on the
preferences of the remaining annotators; this is a metric regarding the compatibility/a-
greement between the defined human summaries;

• an estimate about the highest performance on TVSum 4 according to the best human-
generated summary (with the highest overlap) for each video of the dataset.

For completeness, in Table 4 we report the outcomes of our study using both criteria for
calculating the video-level F-Scores, i.e. the maximum of the computed F-Scores in the case
of SumMe, and the average of these scores in the case of TVSum. The results - which
are consistent with the findings of a recently published study on these datasets [47] - clearly
indicate that video summarization is a highly subjective task, as there is no ideal summary
that exhibits significant overlap with all annotators’ preferences, in both datasets. Moreover,
the “average” metric in the case of TVSum shows that human performance is comparable
with the efficiency of a randomly generated summary, and thus limits the available space for
improvement. In particular, the best possible summary (i.e. a summary that matches the best
human-generated summary for each different video of the dataset) results in a score that is
approximately 10 units higher than the score of a random summary. Given the reasonable lack
of an objective summary for a video, we argue that the “max” criterion is more suitable for
assessing the performance of video summarization approaches. In this sense, the upper-bound
with respect to video summarization efficiency will be 100% in both datasets, denoting that
machine-generated summaries are indistinguishable from human-generated ones.

Table 4: Findings on the performance (F-Score (%)) of different types of summaries and the
theoretical upper-bound of the SumMe and TVSum dataset, based on the “average”
and “max” criterion.

SumMe TVSum
Average Max Average Max

Random 18.1 39.9 53.9 75.5
Human Summaries 31.3 55.1 53.8 77.5
Best Possible 44.7 100.0 64.7 100.0

Evaluation Outcomes

The developed models were initially evaluated for several values of the regularization factor σ,
ranging between 0.05 and 0.5. Greater values were not examined as the models’ performance
was significantly reduced in (at least) one of the datasets for the highest tested value. In
Table 5 we report our findings focusing on the SUM-GAN-AAE model, which was proved to be
the most effective one. As can be seen, this factor affects the model’s efficiency (as reported
in [43]) and thus, it needs fine-tuning. Moreover, the latter seems to be dataset-dependent,
as the highest performance is achieved for different values of σ in each dataset. For fair
comparison with other approaches that rely on a strictly defined set of (hyper-)parameters, in
the following we refer to the SUM-GAN-AAE model with σ = 0.05, since the gain compared
to the model’s performance in SumMe for σ = 0.3, is higher than the observed mitigation
in TVSum for σ = 0.1. Similarly, the best performing SUM-GAN-sl and SUM-GAN-VAAE
models were observed for σ = 0.05 and σ = 0.3 respectively.

4Based on the “max” criterion, the upper-bound for SumMe is 100%, i.e. the generated summary perfectly
matches with a human-generated summary.

Page 31 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Table 5: Performance (F-Score (%)) of SUM-GAN-AAE for different values of the regulariza-
tion factor. Best performance is shown in bold.

SumMe TVSum
σ = 0.05 48.8 58.4
σ = 0.1 46.4 58.6
σ = 0.15 47.4 58.8
σ = 0.3 47.1 57.9
σ = 0.5 44.7 59.2

The results of the comparative evaluation of these models against the performance of a ran-
domly generated summary 5 and of other state-of-the-art unsupervised approaches on SumMe
and TVSum are reported in Table 6 6. The original SUM-GAN method is not listed in this table
as it follows a different evaluation protocol, and the comparison with it is reported in the sequel
(see Tables 8 and 9). These results show that: (i) the performance of a few SoA methods is
comparable (or even worse) than that of a random summary generator; (ii) the best approach
on TVSum (Tessellation) achieves random-level performance on SumMe, a fact that indicates
it is a dataset-tailored technique; (iii) the best technique on SumMe (UnpairedVSN) performs
slightly better than SUM-GAN-sl but not better than SUM-GAN-AAE, while it is clearly less
competitive on TVSum; (iv) the introduction of variational attention reduces the efficiency of
the SUM-GAN-sl model, possibly due to the difficulty in efficiently defining two latent spaces
in parallel to the continuous update of the model’s components during the training; (v) the re-
placement of the VAE with the AAE results in a noticeable performance improvement over the
SUM-GAN-sl model. The latter indicates the contribution of the introduced attention mecha-
nism in enhancing the decoder’s ability to identify the most important frames to pay attention
to, and in effectively guiding the learning of the adversarial component of the architecture.
The applied training strategy efficiently backpropagates this knowledge to the frame selection
component, resulting in a significantly improved performance compared to the SUM-GAN-sl
model. On top of these findings, the SUM-GAN-AAE model performs consistently well in both
datasets (being the best one on SumMe), and thus is the most competitive one among the
compared approaches.

Table 6: Comparison (F-Score (%)) with different unsupervised video summarization ap-
proaches, on SumMe and TVSum. +/− indicate better/worse performance compared
to SUM-GAN-AAE.

SumMe TVSum
Random summary 39.9 (−) 53.9 (−)
Tessellation [32] 41.4 (−) 64.1 (+)
DR-DSN [75] 41.4 (−) 57.6 (−)
Online Motion-AE [70] 37.7 (−) 51.5 (−)
UnpairedVSN [53] 47.5 (−) 55.6 (−)
SUM-GAN-sl 47.3 (−) 58.0 (−)
SUM-GAN-VAAE 45.7 (−) 57.6 (−)
SUM-GAN-AAE 48.8 58.4

In addition, a study of the training curves of the models’ components (see Fig. 13) points
out that the AAE contributes to much faster and more stable training of the model. In

5Importance scores were defined based on a uniform distribution of possibilities and the experiment was
repeated 100 times.

6The scores for each method are from the corresponding paper.

Page 32 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

particular, with respect to the generative adversarial part of the architecture, the LORIG and
LSUM losses which are responsible for training the discriminator (top part of Fig. 13) and
the LGEN loss which contributes to the training of the decoder (bottom left part of Fig. 13)
are converging much earlier for the SUM-GAN-AAE model (compared to SUM-GAN-sl), while
this convergence is kept stable for the remaining training period. This impact is much more
pronounced after focusing on the training loss of the frame selector and the encoder of the
developed models, where a rapid reduction of this loss is exhibited once again for the very
early training epochs in the case of SUM-GAN-AAE. Finally, the faster training achieved by
introducing the AAE component is demonstrated also after comparing the learning curves of
the SUM-GAN-sl and SUM-GAN-AAE models. As presented in Fig. 14, both models start from
approx. the performance of a randomly-generated summary and develop knowledge about the
task (the fluctuation is reasonable due to the adversarial nature of the training), which results
in a noticeable improvement of their summarization efficiency. Nevertheless, the training in
the case of SUM-GAN-AAE is much faster, as the model reaches its peak performance before
the 30th training epoch, while the highest performance for the SUM-GAN-sl model is observed
after the 90th training epoch. A similar training efficiency was exhibited in the case of the
TVSum dataset.

Figure 13: Loss curves of the discriminator (top), generator (bottom left), frame selector
and encoder (bottom right) for the SUM-GAN-AAE and SUM-GAN-sl models.
Horizontal axis denotes training epochs.

Our unsupervised SUM-GAN-sl and SUM-GAN-AAE models were compared against the per-
formance of supervised approaches for video summarization (which is a comparison that is
rather unfair to the developed unsupervised models). From the data presented in Table 7, it
seems that: (i) the two best methods in TVSum (MAVS and Tessellationsup respectively) are
highly-adapted to this dataset, as they exhibit random-level performance on SumMe; (ii) only
a few supervised methods clearly surpass the performance of a randomly-generated summary
on both datasets, with VASNet being the best among them. The performance of the latter
methods ranges from 44.1 to 49.7 in SumMe, and from 56.1 to 61.4 on TVSum. Hence, the

Page 33 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Figure 14: In blue, the average (over 5 splits) learning curves of the proposed models on
SumMe. In red, the computed 6-order polynomial that approximates the learning
curves.

performance of our SUM-GAN-sl (47.3 on SumMe and 58.0 on TVSum) and SUM-GAN-AAE
(48.8 on SumMe and 58.4 on TVSum) models makes our unsupervised methods comparable
with state-of-the-art supervised techniques for video summarization.

Table 7: Comparison (F-Score (%)) of our unsupervised methods with supervised video sum-
marization approaches on SumMe and TVSum. +/−/= indicate better/worse/equal
performance compared to SUM-GAN-AAE.

SumMe TVSum SumMe TVSum
Random summary 39.9 (−) 53.9 (−) MAVS [20] 40.3 (−) 66.8 (+)
vsLSTM [66] 37.6 (−) 54.2 (−) SUM-FCN [54] 47.5 (−) 56.8 (−)
dppLSTM [66] 38.6 (−) 54.7 (−) SUM-DeepLab [54] 48.8 (=) 58.4 (=)
H-RNN [72] 7 41.1 (−) 57.7 (−) DR-DSNsup [75] 42.1 (−) 58.1 (−)
Tessellationsup [32] 37.2 (−) 63.4 (+) ActionRanking [16] 40.1 (−) 56.3 (−)
HSA-RNN [73] 44.1 (−) 59.8 (+) UnpairedVSNpsup [53] 48.0 (−) 56.1 (−)
DQSN [76] - 58.6 (+) VASNet [19] 49.7 (+) 61.4 (+)
DSSE [64] - 57.0 (−) SUM-GAN-sl 47.3 (−) 58.0 (−)

SUM-GAN-AAE 48.8 58.4

Finally, for fair comparison with approaches evaluated using the single ground-truth summaries
of each video of SumMe and TVSum (i.e. the different evaluation protocol adopted in [22, 30,
43, 60, 69, 63]), we assessed our models via this approach as well. Once again, we considered
different values for the regularization factor σ, to examine its impact on the models’ efficiency
according to this evaluation protocol and make our findings comparable with the ones in [43].
The results reported in Table 8 indicate that the methods’ performance is, indeed, affected by
the value of σ, while the effect of this hyper-parameter depends on the evaluation approach
(best performance when using multiple human summaries was observed for σ = 0.1 on SUM-
GAN-sl and for σ = 0.05 on SUM-GAN-AAE). Moreover, our methods clearly outperform
the original SUM-GAN model on both datasets, even for the same value of σ. Finally, the
comparison of the best performing instance of our model (for σ = 0.5) with other techniques
that follow this evaluation protocol, indicates the superiority of the proposed approach in both
datasets (see Table 9 6).

Given the findings reported in this section, the SUM-GAN-AAE model is qualified as the
proposed method for video summarization in ReTV, at this stage of the project (month M20).

7Performance reported in a subsequent work of the authors (see [73]).

Page 34 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Table 8: Comparison (F-Score (%)) of the best performing SUM-GAN model (based on the
score reported in [43]) with the performance of SUM-GAN-sl and SUM-GAN-AAE for
different values of the regularization factor σ. Best performance for each developed
model is shown in bold.

σ SumMe TVSum
SUM-GAN 0.3 38.7 50.8

0.1 38.1 61.0
SUM-GAN-sl 0.3 45.2 62.4

0.5 46.8 65.3
0.1 45.9 65.0

SUM-GAN-AAE 0.3 46.6 64.6
0.5 47.7 64.3

Table 9: Comparison (F-Score (%)) of video summarization approaches on SumMe and TV-
Sum, using a single ground-truth summary for each video. Unsupervised methods
marked with asterisk. +/− indicate better/worse performance compared to SUM-
GAN-AAE.

SumMe TVSum
* SUM-GAN [43] 38.7 (−) 50.8 (−)
* SUM-GANdpp [43] 39.1 (−) 51.7 (−)
SUM-GANsup [43] 41.7 (−) 56.3 (−)
SASUM [60] 45.3 (−) 58.2 (−)
DTR-GAN [69] 44.6 (−) 59.1 (−)
A-AVS [30] 43.9 (−) 59.4 (−)
M-AVS [30] 44.4 (−) 61.0 (−)
AALVS [22] 46.2 (−) 63.6 (−)
* Cycle-SUM [63] 41.9 (−) 57.6 (−)
* SUM-GAN-sl 46.8 (−) 65.3 (+)
* SUM-GAN-AAE 47.7 64.3

It should also be noted that the time required for generating a summary using this method
ranges from 5% to 25% of the video’s duration, on a PC with a TitanXP GPU. These times
include the necessary keyframe extraction and processing step; thus, the SUM-GAN-AAE
method is quite fast. When it comes to summarizing a previously un-processed video (thus,
one for which the WP1 Video Analysis service has not already been run) this method is
therefore at least 4 times faster than the implementation of the non-learning-based method
presented earlier in this section, since the latter requires getting the video through the WP1
Video Analysis (VA) service first; the VA service takes roughly as much time as the video’s
duration for processing it (Arguably, this is also implementation-related; one could strip down
the VA service to extract only the features needed for summarization, and this could speed it
up by a factor of 2, i.e. requiring about 50% of the video’s duration for it to run; but even
so, for processing an un-seen video the SUM-GAN-AAE method would still be at least 2 times
faster).

4.6.2. Text to Video Matching

Experimental Setting

To train the AVS framework we combined two different datasets, the TGIF [39], and the MSR-
VTT [61]. The TGIF dataset contains approximately 100k short animated GIFs with one short

Page 35 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

description for every GIF. We extract the keyframes by sampling each video every 0.5 seconds,
obtaining from this procedure 820.000 frames. The MSR-VTT dataset consists of 10.000 short
video clips, and each video is followed by 20 short descriptions. We extract keyframes as in
the case of the TGIF dataset obtaining 239.537 keyframes.

Our experiments were performed on the TRECVID AVS 2016 (AVS16) [4] dataset that consists
of approximately 600 hours of internet archive videos and is evaluated on 30 queries. Auto-
mated shot boundaries are provided by TRECVID. Ground-truth annotated training data does
not exist for these queries. We analyze our results in terms of mean extended inferred average
precision (MXinfAP), which is an approximation of the mean average precision suitable for the
partial ground-truth that accompanies the TRECVID dataset [62].

Evaluation Outcomes

In Table 10 the results of the developed method for ad-hoc video search at the AVS16 dataset
is presented. Two different variations of applying this method on the AVS16 dataset are
evaluated. In the AVS16original one frame per shot is sampled, resulting in 335.944 frames,
while in the AVS16dense we sample each shot with up to 15 frames per shot resulting in
1.231.143 frames. As expected the implemented method performs better when more than one
keyframes are examined for each shot, i.e., in the AVS16dense setup. In this deliverable, we
presented an early version of the text-to-video matching system which is meant to be used as
a baseline for future improvements and upgrades. Future improvements will include examining
deeper neural network architectures, improved loss functions as well as enhanced textual and
visual representations.

Table 10: Evaluation results of the AVS method.

Evaluation Dataset MXinfAP
AVS16original 4.21
AVS16dense 4.82

4.7. Video Summarization Component, Workflow and API

The CERTH Video Summarization (VS) component is a REST service that:

• Retrieves the video file, the segmentation data and the features extracted from videos
previously analyzed by the WP1 Video Analysis (VA) service. The necessary data are
retrieved from the GENISTAT repository where the results of the WP1 VA service are
stored.

• Summarizes the video, selecting appropriate segments until the target duration is reached,
and produces a summarization script in JSON format.

• The summarization script is submitted back to the service (via a Render call) and the
video summaries and mouse-over preview videos (in gif and mp4 formats) are rendered.

Alternatively, in order to support different scenario uses, and if the service is called including
the {"end2end":1} flag in the HTTP post body, then:

• The video file is retrieved.

Page 36 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

• The video is analyzed from scratch, by performing temporal segmentation and extracting
features (invoking the WP1 VA service).

• Summarizes the video, selecting segments until the target duration is reached, and pro-
duces a summarization script in JSON format.

• The summary script as well as the video previews are rendered to video files and are
available in the CERTH server for the user to download.

The component works in an asynchronous way, thus, to use the service, there are three types
of call:

• Start call: an HTTP POST call (i.e. has a BODY) which submits the input video and
initiates a new session.

• Status call: an HTTP GET call that queries the status of a session.

• Results calls: an HTTP GET call that retrieves various information about a successfully
completed session.

Start Call

HTTP POST http://retv.iti.gr:8090/va

Obligatory JSON structured arguments in the POST call body (one of the following):

• "video_analysis_sessions": use a single (or multiple) video analysis session id(s) from
which to fetch video analysis data for the summarization.

• "video_urls": use a single (or multiple) video URL(s) from a web page as input to the
service. The video will be downloaded from the web page and analyzed8. This can also
be a Google Drive link or any link that points to any downloadable video file. Use this
argument only when you want to run an end-2-end session (i.e., include the "end2end":1
string in your JSON body.

The URLS must be submitted as a JSON structured list (even if submitting a single video analy-
sis session id or a single video URL, for example: {"video_analysis_sessions":["1234567890123456"]}).

Optional JSON structured arguments in the POST call body (can be optionally utilized and
used in any order):

• "end2end" (int, [0,1], default=0): The usual call of this service takes as input the features
already extracted from the video analysis service and produces a summary script. Setting
this to 1, will force the service to perform video analysis, from scratch and then, create
the summarization script and render the summaries and previews.

• "target_duration" (float, default=30.0): The target duration of the summary, in seconds.
At the current implementation, the resulting summary duration may diverge from the
set target duration ±2 seconds. Additionally, the set target duration cannot be more
than 1/2 of the original video duration, e.g., for a 1-minute video you cannot request

8For a complete list of supported sites, see https://ytdl-org.github.io/youtube-dl/
supportedsites.html

Page 37 of 54

https://ytdl-org.github.io/youtube-dl/supportedsites.html
https://ytdl-org.github.io/youtube-dl/supportedsites.html

D3.2 Content Adaptation, Re-purposing and Scheduling

a summary of more than 30 seconds. If the target duration does not abide by this rule
then it will be automatically adjusted by the service.

• "white_concepts" (string, default is an empty string): Use this for concept-based sum-
marization, to provide a list of desired concept ids. The algorithm favours the selection
of segments that contain one or more of the listed concepts. The syntax is that of a
comma-separated list of items. Each item contains a pool-id string and a concept-id inte-
ger separated by the “:” character. For example, if you want to use segments that contain
fire trucks and fire stations, you can search the concept pools list (available as shared
documents in the project’s repository) locate the Fire_Truck concept in the SIN concept
pool and fire_station concept in the places concept pool, and then call the summarization
service by including the following argument: "white_concepts":"sin:115,places:145".

• "black_concepts" (string, default is an empty string): Use this for concept-based sum-
marization, to provide a list a concept ids. The algorithm avoid the selection of segments
that contain the listed concepts. The syntax is the same as in the case of "white_con-
cepts" parameter.

• "rhythm" (float, [0.25, 2.0], default=1.0): Controls the rhythm of segments in the sum-
mary (“snappiness” of the final summary). In essence this is a float which is multiplied
with the maximum allowed duration of a shot segment that is selected to be included
in the summary. Setting this to 0.1 will produce a summary with very fast alternating
segments (some segments might be less than a second). Setting this to 2.0 will produce
a summary where some segments might be quite long (up to 10 seconds).

• "auto_render" (int, [0,1], default=0): There are cases (e.g., 4u2 use-case) in which the
summary script is not needed. Setting this parameter to 1, will force the service to render
the previews and the summary directly. You can then use a GET results call to retrieve
these from this session (no need to issue a separate render call). The summary script
will still be available in this session, so you can still retrieve it, modify it and submit it to
a different render session to produce a different summary. Note that end2end parameter
regards the video analysis. If you want to perform video analysis, summarization and
rendering in a single session, you should specify "end2end":1 AND "auto_render":1.

• "preview_target_duration" (float, [3.0,8.0], default=5.0): Target duration of the pre-
view, in seconds.

• "preview_static_frame_duration" (float, [0.5,3.0], default=1.0): Duration of each se-
lected key-frame in the static preview, in seconds.

• "utilize_story_percent" (float, [0,1], default=1.0): This parameter allows the exclusion
of the last parts of the original video from consideration when creating the summary.
Most times a “spoiler” might reside in the final shots of a video. This parameter allows
the user to exclude such segments. For example setting "Utilize_story_percent"=0.75
will make sure that no shot from the last quarter of the video will be used.

The start POST call returns a JSON file. If the call is successful, the JSON file contains the
following fields:

• "message": "The call has been received"

• "session": <session>

The <session> is a unique id of the call used later to get status or results.

Page 38 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

If the call is NOT successful, the JSON file contains the following field with a self-explanatory
message. A list of the messages received during a failed start POST call is the following:

’Invalid white_concepts syntax’
’Invalid black_concepts syntax’
’Unknown pool "XXXX"’
’Invalid index "XXXX" for pool "YYYY"’
’Invalid end2end syntax. Value must be 0 or 1’
’Cannot set both video_analysis_sessions and end2end’
’Cannot set end2end=1 without submitting video_urls’
’Either video_analysis_sessions or end2end has to be set’

Render Call

HTTP POST http://retv.iti.gr:8090/render

As a body in the HTTP post call, use the whole (possibly modified) JSON summary script
that the summarization service produces. This will render the summaries and the previews in
the current session folder. To retrieve these see the Results Call paragraph.

Status Call

HTTP GET http://retv.iti.gr:8090/<session>/status

where <session> is the unique id received when calling the service.

The status call returns a JSON file. If the call is successful, the JSON file contains the fields
"status" and "message". If the message field is "The status you requested does not exist",
please check that you provided a valid session ID. The status field will contain various messages
throughout the procedure of the summarization. If a message containing the word "FAILED"
has been received then there was an error during the summarization process. If the "VIDEO
SUMMARIZATION COMPLETED" message has been received, you can proceed to make the
results GET calls.

Results Calls

The various GET calls to retrieve information about a completed session, are the follow-
ing:

•
http://retv.iti.gr:8090/<session>/summary/script

Retrieves the summarization script as a JSON file (ss.json). This JSON also contains
some information about the video analysis session (where the original video can be found)
and the links to all constructed previews.

•
http://retv.iti.gr:8090/<session>/summary/mp4

Page 39 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Retrieves the video summary as an mp4 video file (summary.mp4). Note that for this
call to succeed you must either have submitted a summarization script or have submitted
the summarization script creation using the "end2end":1 .

•
http://retv.iti.gr:8090/<session>/preview/gif

Retrieves the constructed video preview in gif format (preview.gif).

•
http://retv.iti.gr:8090/<session>/preview/mp4

Retrieves the constructed video preview in mp4 format (preview.mp4).

•
http://retv.iti.gr:8090/<session>/preview/static

Retrieves the constructed video static preview in gif format (static.gif).

•
http://retv.iti.gr:8090/<session>/thumbnail

Retrieves the video’s most characteristic keyframe (thumbnail) as a jpg file (summary_-
thumbnail.jpg). Note that this must be used with a render <session>.

•
http://retv.iti.gr:8090/<session>/vs_time

Retrieves the duration of the summarization process in seconds as well as a ratio to the
original video duration.

•
http://retv.iti.gr:8090/<session>/rs_time

Retrieves the duration of the summarization process in seconds as well as a ratio to the
original video duration.

•
http://retv.iti.gr:8090/<session>/log

Retrieves a compact log of the summarization process (for debugging and error tracking
purposes).

•
http://retv.iti.gr:8090/<session>/full_log

Retrieves the full log of the summarization process (for debugging and error tracking
purposes).

All sessions that are older than 48 hours are automatically deleted. After that time, any status
or results GET calls for these sessions will return the message "The status/results you requested
does/do not exist".

Page 40 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

Component Testing and Software Quality Assessment

The VS REST service and the summarization method that is implemented in the service have
undergone extensive testing, both by their developers and by other ReTV partners that use
the service for generating video summaries. The generated summaries have been assessed by
users in ReTV, both within the consortium (as discussed in Section 4.3) and as part of the
user testing performed in relation to the use cases of the project, and the preliminary results
are very encouraging. Concerning unit testing, similarly to the VA service of WP1, several
hundred such tests were conducted to cover all the different possible call configurations of the
service (given the number of either mandatory or optional parameters of the REST service
API, as detailed earlier in this section, and also cover edge cases (such as very short or very
long videos submitted for summarization). The proper exchange of information with the
WP1 VA service, for the types of calls of the VS service that require the previous correct
execution of the VA one, was also tested. In terms of stress testing, the VS REST service
implements a queuing mechanism similar to that of the VA service; this mechanism was also
tested with a few hundred summarization requests that were submitted and were successfully
queued and eventually processed. The VS service is mature for use in ReTV; however, given its
planned transition to using a learning-based summarization method in the near future, further
testing and software quality assessment of it will need to be performed to assess the impact
of the method updates to the service. Such testing will continue, as updates are introduced,
throughout the life of WP3.

Page 41 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

5. Content Recommendation and Scheduling

5.1. Content Recommendation Service Overview

A classic video recommendation service takes user preferences as input and returns content that
best matches those preferences. Our content adaptation service not only recommends videos
but also automatically adapts them. We developed a concise domain-specific language based
on JSON to describe adaptations. We currently support two types of adaptations: Shortening
and Merging.

Shortening describes the act of trimming the start and end of a video segment. We use this
functionality in the Content sWitch scenario in order to make the replacement trailer fit into
the slot of the original trailer.

Merging is the process of combining multiple videos into a single one, which is useful if more
than one show covers a topic that is of interest to a user. Our content adaptation service then
selects multiple videos that fit user preferences. It then passes those videos to the dedicated
summarisation service described in Section 4.

We use a Field-aware Factorisation Machines (FFM) model [31] to find candidate videos for
a given viewer. The advantage of FFM compared to other methods is that it allows us to
exploit a large number of features efficiently. This extendability is a valuable property, as we
expand the number of content features we extract from the video content. It also models the
interactions between the individual feature values which allows us to discover viewing patterns.
For instance, young men are interested in sports content, and fans of tennis are also interested
in golf but not swimming.

Currently, our content features revolve around genres. The source of such features can be an
EPG provider; however, we can categorise any content on our own. Our approach is an unsu-
pervised categorisation, based on speech-to-text transcripts and multilingual word embeddings
[11]9. The topics taxonomy we use is a subset of EBUCore10. We categorise each word in a
sentence independently, and the final categorisation is a majority voting result. Note that a sin-
gle program can belong to multiple categories with different weights. The automatic approach
has an advantage over standard EPG as it can categorise individual parts of a program. This
is particularly important for thematically heterogeneous content, such as news shows where
only a subset of the program might be of relevance to a specific viewer.

We are focusing on the two use cases, both described in detail in D6.2, namely:

1. 4u2 Chatbot, providing user with an up-to-date video content reflecting her explicitly
declared interests

2. Content sWitch, replacing in-stream video trailers with the trailers best suited for the
user behavioural profile (implicit interests)

While the resulting videos for the Use Case 1 and Use Case 2 are vastly different, we see this
as the application of the same two-step process:

1. Find the best videos for a user under a set of business constraints.

2. Adapt those videos to fit the context.
9https://github.com/facebookresearch/MUSE

10https://tech.ebu.ch/MetadataEbuCore

Page 42 of 54

https://github.com/facebookresearch/MUSE
https://tech.ebu.ch/MetadataEbuCore

D3.2 Content Adaptation, Re-purposing and Scheduling

Sample business constraints that we can encode are a maximum and minimum length. More
advanced business constraints could be to bias the recommendation towards an editorial fo-
cus.

We can train our recommendation model on both types of input: implicit user profile, i.e.
behavioural data, and explicitly provided user preferences.

In the next iteration, we plan to extend this system to support richer automatic content
adaption.

5.2. Content Scheduling Service Overview

The content scheduling service is a part of the Content Wizard, described in detail in D5.2,
section 4.2. Currently, the workflow for the manual scheduling of posts is implemented. Social
media posts can be scheduled to be posted to multiple publication vectors at once, for example
to Twitter and Facebook. Automatic scheduling is not yet integrated but will be in the
final version of the Content Wizard. We describe our approach to the automatic scheduling
below.

We plan to use a model developed in T2.4 (cf. D2.2). This is the forecasting model based
on ensembles of decision trees (random forests) that in addition to the standard seasonality
features also includes content-related features as well as event-related features. The latter
features allow for modelling irregularities in the future audience numbers that can be attributed
either to the special event (usually sports) or to the features of the content. We can use such
a prediction model to find an optimal publication time for some TV content (on the linear
channel, e.g. Web stream). In order to achieve such an optimization, we score a given piece
of content – and its corresponding content- and event-based features – for all publication time
candidates and take the one that maximizes the audience. It is worth to mention that other
targets are also possible, e.g. we can optimize not for the total/general audience, but for some
segment of audience, e.g. people from a given location.

After achieving promising results with the content- and event-feature augmented forecast-
ing models, we plan to focus on the automatic publication time optimization in the near
future.

5.3. Audience Profiling for the Content Recommendation

Another feature for audience profiling is to segment the audience by viewing preferences [45].
Viewing preferences can be learnt directly from past audience data, i.e. preferences about what
channels are watched on what day at what time. Assuming the preferences of the audience
remains fundamentally the same, future audience interests can be predicted. We already noted
that the type of content in the TV programming can also be a feature for a learning model,
so that preferences represent what content is preferred by the audience. An advantage of the
content-based audience profiling is that the preferences can be learnt across all TV channels
rather than assuming every TV channel would have its own, individual and entirely separate
viewing patterns. In other words, we can consider the recommendation task to determine the
likely percentage of the total audience (the sum of all individual viewers in our audience data)
to watch a piece of TV content on a given channel at a given time.

Page 43 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

We benefit from having access to data about viewers and their viewing sessions from Zattoo,
anonymized and provided in a pre-aggregated form, so that we can not reconstruct a single
viewers TV viewing. In our case, we want to forecast the total audience for a piece of TV
content as the aggregation of audience segments learnt by a recommendation model from
the past audience data which would watch that content. The intention is not to segment
viewers using sets of multiple, individual categorical interests (e.g. soccer fan, murder mystery
fan etc.) which could be determined by an explicit collection of interests (e.g. as part of a
viewer’s profile) as this could lead to wildly simplistic matching (e.g. TV program has category
Sport, so is watched by all Sports fans). Rather, our model should determine implicitly the
likelihood of each viewer to watch a particular category of TV content. This means every
viewer implicitly belongs to some audience segment, i.e. a group of viewers who share a
similar likelihood to watch TV across each category. We expect this to allow us to capture
more complex relationships between viewing patterns such as there are Sports fans who are just
as likely to watch News whereas others would only watch Sports. Now for a future broadcast
time point, we can determine if a viewer is likely to be watching TV at that time and if so,
given the content across channels, which content they are most likely to be watching. Finally,
we use the implicit audience segments (fuzzy clusters learned by the model) to place different
viewer groups on different channels, according to their interests.

We experimented with two modeling approaches:

1. Baseline model: standard collaborative filtering based on Non-Negative Matrix Factor-
ization (NNMF) [28]. This model does not use any additional content- or event-related
features. It just observes the interactions between users and content (TV programs).

2. Field-aware Factorization Machines (FFM) model [31]. This model is as an extension of
the basic factorization model, and it allows us to test the additional features (content-
and event-based). Most importantly, it models the interactions between the individual
feature values as a dot-product of the associated weighted vectors.

Collaborative filtering is traditionally used in recommendation. Indeed, our starting point for
using these approaches was to build a model of viewer preferences for content recommendation.
For a given set of TV content options, we wanted to recommend which TV content the viewer
is most likely to watch. We have developed two TV content recommendation scenarios:

1. Content sWitch: we replace a "general audience" program trailer in the TV stream with
a trailer personalized to the user’s interests. The replacement is done in real-time in
the IP stream and takes into account the lengths of the original and replaced trailer.
Personalized content needs to be adapted to the original trailer duration, either by cutting
it or through more advanced content summarization. In the first version we only use
replacement trailers that are a couple of seconds too long at most, and then naively cut
off the end. This works well in practice, as most trailers end with content that is not
crucial to understand the complete message. In future versions we will use the content
adaptation service to shorten the trailers in a way that respects the overall story line.

2. 4u2 Chatbot: within a preferred messaging app (e.g. Telegram or Whatsapp) the user
subscribes to a set of content categories. Personalised video summaries (e.g. snippets
of last nights’ programming) are sent to the user on a regular basis.

In the first scenario, we track audience behavior and train the model that learns the interaction
patterns between users (and their associated attributes) and individual content pieces (and their
associated features, such as category). In the second scenario, we only have a general, explicitly

Page 44 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

provided list of user categories, so the input information is less detailed and static (unless user
modifies his or her profile). This allows us to compare recommendation in these two contexts
- one where the user can be identified by an anonymous log-in, the other where the user is not
identifiable across sessions and we can only use the explicitly provided information.

The recommendation model is however also a prediction model, since it learns for any choice
of TV content the likelihood of that content being watched by any audience segment. Here,
rather than having multiple TV content items and a single audience segment (that the target
viewer of a recommendation belongs to), we would consider a single TV content item and
calculate the likelihood of being watched across all audience segments.

It should be noted that the model is trained on very sparse data (since every user’s viewing
pattern covers only a small part of the total broadcast TV content) and it requires to fit a
high number of parameters (each feature value, e.g. each user identifier, is associated with a
vector of weights in a low-dimensional latent space). FFM models are also prone to overfitting
and require (a) careful training with the evaluation and test datasets and optimization early-
stopping if the train/evaluation metrics diverge, as well as (b) proper optimization of model
hyperparameters. We applied the Bayesian hyperparameter optimization approach.

For the early-stopping, we used the options available in xLearn library that provides fast im-
plementation of FFM models. We include a measurement of the strength of the interaction
between the user and the content (i.e. our target value to be modeled). However, explicit
feedback from the user regarding how satisfied/engaged he or she is with a given program is
missing from our viewing data. Therefore we based our model on the fraction of the program
that the user watched. The assumption is that the more of the program the user has watched,
the more relevant it was for her or him. On the other end, zapping between programs generates
low target values that are considered as (implicit) negative feedback. We do not consider total
watching duration since this would introduce bias and promote some content categories (e.g.
movies are usually much longer than TV series or news).

We trained the recommendation model with our categorized audience data and the implicit
audience segments. There are two types of metrics that are involved in the recommendation
model training:

1. Metrics that are optimized during model fitting phase;

2. Metrics that we use to evaluate when the model is good enough for our purposes.

For the model optimization, we used the standard metric provided by xLearn library11, log-loss
(equivalent to cross-entropy). It should be noted that our approach is based on providing a
single content item recommendation to a given user. So the metric that optimizes only the
top of the program ranking (instead of optimizing for all users data) is preferred here. In the
future, we’d like to experiment with metrics such as WARP (cf. e.g. 12).

For the model evaluation, presented below, we applied the three standard metrics:

• MAE (mean average error) between the observed targets and the model-recommended
values,

• Pearson linear correlation between the observed targets and the model-recommended
values

11https://github.com/aksnzhy/xlearn
12https://medium.com/@gabrieltseng/intro-to-warp-loss-automatic-differentiation-and-pytorch-b6aa5083187a

Page 45 of 54

https://github.com/aksnzhy/xlearn
https://medium.com/@gabrieltseng/intro-to-warp-loss-automatic-differentiation-and-pytorch-b6aa5083187a

D3.2 Content Adaptation, Re-purposing and Scheduling

Table 11: Recommendation model with TV content categorization as additional feature com-
pared to the benchmark

Model MAE Pearson Spearman
NNMF 0.45 0.32 0.35

FFM (no EPG) 0.25 0.73 0.75
FFM (coarse EPG) 0.22 0.75 0.77
FFM (detailed EPG) 0.18 0.79 0.8

• Spearman rank correlations.

Especially the last metric is relevant for our scenarios, since we are not concerned with absolute
values predicted by our model, but rather with having relevant content pieces at the top of
the recommendations ranking.

Table 11 shows that, compared to the baseline model (NNMF), a feature-based model (FFM)
could already establish significantly better results which were also moderately improved by the
additional of coarse or detailed TV programming content categories.

We compared the baseline model (NNMF, not using any content or user features, beside their
identifiers) with various variants of FFM models (using the attributes described in the previous
section):

• NNMF model had MAE error 0.45 (the smaller the better) and rank correlation between
recommended and actually watched programs only 0.35 (the larger the better)

• The best FFM model (with hyperparameters optimization applied) without additional
attributes achieved MAE 0.25 and rank correlation 0.75

• The model with just one additional attribute (EPG category for the TV content) achieved
MAE 0.18 and rank correlation 0.8. It was slightly worse in case of the less-detailed EPG
metadata: MAE 0.22 and rank correlation 0.77. It shows the importance of providing
the model with high-quality content metadata.

Interestingly, the model without additional attributes was also more prone to overfitting. It
may be because the differences between training and evaluation datasets are driven by factors
which are not explicitly observed in the data (i.e. content-related attributes). Models for the
chatbot scenario (where the input is the set of interests explicitly provided by a user, instead
of user behavioral data - detailed interactions with content - as in the case of Content sWitch)
were - as expected - slightly worse than the model in the Content sWitch scenarios: MAE 0.23
(vs. 0.18 for Content sWitch) and rank correlation 0.72 (vs. 0.8 for the Content sWitch). Still,
the results are much better than the baseline or the model without any additional attributes
provided. In both use case scenarios, the model took advantage of the interactions between
the content features and the (implicit or explicit) user interests.

Future work is to test the recommendation model for audience prediction, aggregating audi-
ence segments that are most likely to watch a piece of future TV content. Planned model
improvements include:

• Using WARP instead of log-loss optimization - this will focus on the top of the recom-
mendation ranking, instead of the complete ranking

• Testing if explicit audience segmentation improves the model (e.g. k-means clustering
of viewers by watching preference) compared to the current, implicit fuzzy approach

Page 46 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

• Including temporal features in the model (with the assumption that the current user
session provides a better context for recommendations than previous sessions).

5.4. Future Work and Conclusions

The currently tested recommendation model uses the following attributes:

• user: identifier, behavioral profile (the percentage of the time spent on each individual
EPG category, which can be also viewed as implicit fuzzy segmentation of users)

• program: identifier, main EPG category (e.g. sport), detailed EPG genre (e.g. discipline)
(actual values depending on the EPG metadata provider)

The recommendation modeling could still be improved as results vary greatly between EPG
categories. In general, the model works best for the popular categories such as sport, since
we also have most training data for such categories. In parallel, we work on extending the
additional attributes with events. As noted earlier (also cf. D2.2 deliverable), audience data
contains anomalies which can be to a large extent attributed to events (sport events in partic-
ular) broadcast on TV. We will address this by explicitly adding event features into the model
and are still learning how to model the events to represent their features for optimal recom-
mendation, analogously to the approach that we took for the forecasting model (cf. D2.2).
The big advantage of the FFM model is that it is able to model the interactions between
the various feature values, so it automatically learns, e.g. that sport events mostly affect the
behaviour of a sport-predisposed audience segment. Similar to users and content, we add an
event identifier and set of event features (the more detailed the better, including temporal and
geographical features of relevance). Later we are interested in also adding:

• behavioural viewership patterns (hours of the day, days of the week) in order to be able
to find not only a proper content but also optimal engagement time, and

• more advanced content features such as face detection with Deep Neural Networks. It
could help to fine-grain user preferences even more, capturing user interest in a given
TV presenter or an actor.

In conclusion, we have learnt that in audience prediction we can improve forecasts (cf. D2.2)
and recommendations by taking into account the category of the TV content. While we have
seen in the data how specific events cause significant anomalies in audience interests trends,
we are still learning how best to incorporate event knowledge into our recommendation model.
The sparsity and irregularity of events as part of overall audience measurement is a limitation.
We also can implicitly segment the (actual or predicted) audience and use this in TV content
recommendation. We found that the TV program category and overall content popularity as
learnt by the recommendation model is even more important than an individual user profile.
This may be considered a positive aspect of the model, since for a new user it allows to partially
alleviate the cold-start problem (i.e. to recommend generally popular content rather than a
random one, and iteratively learn the user preferences). We are now testing the accuracy of this
recommendation model in predicting future audiences by aggregating the audience segments
likely to watch a piece of future TV content. In general, we have found that AI models with
additional features do work better but in terms of feature selection, content-based features
have proven more effective to date compared to audience-based and then to event-based. The
predictive analytics will be used in the ReTV project to provide tools for media organisations
to help them publish the right content on the right channel at the right time. Two scenarios

Page 47 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

demonstrate how AI enabled audience prediction and profiling can power new innovative TV
content recommendation services for TV viewers.

6. Conclusion and Outlook

In the context of viewer profiling, we investigated the implicit segmentation derived from the
recommendation model and evaluated its relevance as a way to measure user interests in
various content categories (either provided by EPG metadata or automatically learned by a
model).

In terms of video adaptation and re-purposing, we presented in this deliverable three meth-
ods for video summarization; one non-learning-based that relies primarily on shot clustering,
and two unsupervised learning-based methods that are realized by new deep learning architec-
tures that we proposed. We also presented our early experiments on text-to-video matching.
Concerning future work, we continue to work on improving the learning-based summarization
paradigm by examining further modifications to the deep network architecture, as we consider
this to be a very promising and advantageous approach to summarization. We will also in-
vestigate how we can combine the advantages of the learning-based and non-learning-based
approaches by introducing explicit video editor’s desires (e.g., no anchorperson shots in the
summary) in the learning-based paradigm. On the software implementation side, these de-
velopments will also be reflected in the Video Summarization REST service, which will be
updated accordingly. Furthermore, we continue to work on improving the results of text-to-
video matching and we will employ it for the task of targeted advertisement placement in the
video.

In the context of content recommendation, we researched on how the content and event-
related features can be used to improve the quality of the standard, baseline models based
on collaborative filtering (such as factorization machines). We found out that both types
of features are very relevant, both in terms of recommendations, as well as the audience
forecasting (cf. D2.2). Our next steps will focus on extending it even further with more
fine-grained content-related features (derived from video annotation tools, cf. WP1) and more
extensive set of event-based features.

In context of content scheduling, we have a manual scheduling implemented as the part of
Content Wizard scenario (cf. D5.2, section 4.2). Currently we start to work on the model-based
publication time optimization, based on the forecasting model developed in T2.4.

Page 48 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

References

[1] J. Almeida, N. J. Leite, and R. d. S. Torres. Vison: Video summarization for online
applications. Pattern Recogn. Lett., 33(4):397–409, Mar. 2012.

[2] E. Apostolidis and V. Mezaris. Fast shot segmentation combining global and local visual
descriptors. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6583–6587. IEEE, 2014.

[3] K. Apostolidis, E. Apostolidis, and V. Mezaris. A motion-driven approach for fine-grained
temporal segmentation of user-generated videos. In K. Schoeffmann, T. H. Chalidab-
hongse, C. W. Ngo, S. Aramvith, N. E. O’Connor, Y.-S. Ho, M. Gabbouj, and A. El-
gammal, editors, MultiMedia Modeling, pages 29–41, Cham, 2018. Springer International
Publishing.

[4] G. Awad, J. Fiscus, and M. M. et al. Trecvid 2016: Evaluating video search, video event
detection, localization, and hyperlinking. In TRECVID 2016 Workshop. NIST, USA, 2016.

[5] H. Bahuleyan, L. Mou, O. Vechtomova, and P. Poupart. Variational attention for
sequence-to-sequence models. In Proceedings of the 27th International Conference on
Computational Linguistics, pages 1672–1682, Santa Fe, New Mexico, USA, Aug. 2018.
Association for Computational Linguistics.

[6] J. Calic, D. P. Gibson, and N. W. Campbell. Efficient layout of comic-like video summaries.
IEEE Transactions on Circuits and Systems for Video Technology, 17(7):931–936, July
2007.

[7] P. P. K. Chan, H. Yu, W. W. Y. Ng, and D. S. Yeung. A novel method to reduce redun-
dancy in adaptive threshold clustering key frame extraction systems. In 2011 International
Conference on Machine Learning and Cybernetics, volume 4, pages 1637–1642, July 2011.

[8] J. Cho. PyTorch Implementation of SUM-GAN from “Unsupervised Video Summarization
with Adversarial LSTM Networks”, 2017. (last accessed on July 10, 2019).

[9] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014.
Association for Computational Linguistics.

[10] W. Chu, Y. Song, and A. Jaimes. Video co-summarization: Video summarization by visual
co-occurrence. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3584–3592, June 2015.

[11] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, and H. Jégou. Word translation without
parallel data. CoRR, abs/1710.04087, 2017.

[12] S. E. F. de Avila, A. P. B. a. Lopes, A. da Luz, Jr., and A. de Albuquerque Araújo. Vsumm:
A mechanism designed to produce static video summaries and a novel evaluation method.
Pattern Recogn. Lett., 32(1):56–68, Jan. 2011.

[13] J. Dong, X. Li, and C. G. M. Snoek. Predicting visual features from text for image and
video caption retrieval. IEEE Transactions on Multimedia, 20(12):3377–3388, Dec 2018.

Page 49 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

[14] N. Ejaz, I. Mehmood, and S. W. Baik. Feature aggregation based visual attention model
for video summarization. Computers & Electrical Engineering, 40(3):993 – 1005, 2014.
Special Issue on Image and Video Processing.

[15] N. Ejaz, T. B. Tariq, and S. W. Baik. Adaptive key frame extraction for video summa-
rization using an aggregation mechanism. Journal of Visual Communication and Image
Representation, 23(7):1031 – 1040, 2012.

[16] M. Elfeki and A. Borji. Video summarization via actionness ranking. In IEEE Winter
Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA,
January 7-11, 2019, pages 754–763, Jan 2019.

[17] E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse modeling for
finding representative objects. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1600–1607, June 2012.

[18] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler. Vse++: Improving visual-semantic
embeddings with hard negatives. 2018.

[19] J. Fajtl, H. S. Sokeh, V. Argyriou, D. Monekosso, and P. Remagnino. Summarizing
videos with attention. In G. Carneiro and S. You, editors, Computer Vision – ACCV 2018
Workshops, pages 39–54, Cham, 2019. Springer International Publishing.

[20] L. Feng, Z. Li, Z. Kuang, and W. Zhang. Extractive video summarizer with memory
augmented neural networks. In Proceedings of the 26th ACM International Conference
on Multimedia, MM ’18, pages 976–983, New York, NY, USA, 2018. ACM.

[21] B. J. Frey and D. Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

[22] T. Fu, S. Tai, and H. Chen. Attentive and adversarial learning for video summarization. In
IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village,
HI, USA, January 7-11, 2019, pages 1579–1587, 2019.

[23] M. Furini, F. Geraci, M. Montangero, and M. Pellegrini. Stimo: Still and moving video
storyboard for the web scenario. Multimedia Tools Appl., 46(1):47–69, Jan. 2010.

[24] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse sequential subset selection for
supervised video summarization. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, pages 2069–2077, Cam-
bridge, MA, USA, 2014. MIT Press.

[25] M. Gygli, H. Grabner, and L. V. Gool. Video summarization by learning submodular mix-
tures of objectives. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3090–3098, June 2015.

[26] M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool. Creating summaries from
user videos. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer
Vision – ECCV 2014, pages 505–520, Cham, 2014. Springer International Publishing.

[27] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[28] P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. 5(Nov):1457–
1469, 2004.

Page 50 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

[29] j. peng and q. xiaolin. Keyframe-based video summary using visual attention clues. IEEE
MultiMedia, 17(2):64–73, April 2010.

[30] Z. Ji, K. Xiong, Y. Pang, and X. Li. Video summarization with attention-based encoder-
decoder networks. IEEE Transactions on Circuits and Systems for Video Technology,
pages 1–1, 2019.

[31] Y. Juan, Y. Zhuang, W. S. Chin, and C. J. Lin. Field-aware factorization machines for
ctr prediction. pages 43–50, 2016.

[32] D. Kaufman, G. Levi, T. Hassner, and L. Wolf. Temporal tessellation: A unified approach
for video analysis. In 2017 IEEE International Conference on Computer Vision (ICCV),
pages 94–104, Oct 2017.

[33] A. Khosla, R. Hamid, C. Lin, and N. Sundaresan. Large-scale video summarization using
web-image priors. In 2013 IEEE Conference on Computer Vision and Pattern Recognition,
pages 2698–2705, June 2013.

[34] C. Kim and J.-N. Hwang. Object-based video abstraction for video surveillance systems.
IEEE Transactions on Circuits and Systems for Video Technology, 12(12):1128–1138, Dec
2002.

[35] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014.

[36] J.-L. Lai and Y. Yi. Key frame extraction based on visual attention model. Journal of
Visual Communication and Image Representation, 23(1):114 – 125, 2012.

[37] S. Lee, J. Sung, Y. Yu, and G. Kim. A Memory Network Approach for Story-based
Temporal Summarization of 360 Videos. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[38] X. Li, B. Zhao, and X. Lu. A general framework for edited video and raw video summa-
rization. IEEE Transactions on Image Processing, 26(8):3652–3664, Aug 2017.

[39] Y. Li, Y. Song, L. Cao, J. Tetreault, L. Goldberg, A. Jaimes, and J. Luo. TGIF: A
New Dataset and Benchmark on Animated GIF Description. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[40] Y. Li, T. Zhang, and D. Tretter. An overview of video abstraction techniques. Hewlett
Packard, Technical Reports, 01 2001.

[41] S. Lu, Z. Wang, T. Mei, G. Guan, and D. D. Feng. A bag-of-importance model with
locality-constrained coding based feature learning lt;newline/ gt;for video summarization.
IEEE Transactions on Multimedia, 16(6):1497–1509, Oct 2014.

[42] M. Ma, S. Mei, S. Wan, Z. Wang, and D. Feng. Video summarization via nonlinear sparse
dictionary selection. IEEE Access, 7:11763–11774, 2019.

[43] B. Mahasseni, M. Lam, and S. Todorovic. Unsupervised video summarization with ad-
versarial lstm networks. pages 2982–2991, 2017.

[44] F. Markatopoulou, D. Galanopoulos, V. Mezaris, and I. Patras. Query and keyframe
representations for ad-hoc video search. pages 407–411, 06 2017.

Page 51 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

[45] D. Meyer and R. J. Hyndman. The accuracy of television network rating forecasts: The
effects of data aggregation and alternative models. 1(3):147–âĂŞ155, 2006.

[46] T. Mikolov, I. Sutskever, and K. Chen et al. Distributed representations of words and
phrases and their compositionality. In 26th Int. Conf. on Neural Information Processing
Systems, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates.

[47] M. Otani, Y. Nakahima, E. Rahtu, and J. Heikkilä. Rethinking the evaluation of video
summaries. In 2019 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[48] M. Otani, Y. Nakashima, E. Rahtu, J. Heikkilä, and N. Yokoya. Video summarization using
deep semantic features. In The 13th Asian Conference on Computer Vision (ACCV’16),
2016.

[49] P. Over, J. Fiscus, G. Sanders, D. Joy, M. Michel, G. Awad, A. Smeaton, W. Kraaij, and
G. Quénot. Trecvid 2014–an overview of the goals, tasks, data, evaluation mechanisms
and metrics. 2014.

[50] R. Panda, A. Das, Z. Wu, J. Ernst, and A. K. Roy-Chowdhury. Weakly supervised
summarization of web videos. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 3677–3686, Oct 2017.

[51] D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid. Category-specific video summa-
rization. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision
– ECCV 2014, pages 540–555, Cham, 2014. Springer International Publishing.

[52] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep con-
volutional generative adversarial networks. In 2016 International Conference on Learning
Representations (ICLR), 2016.

[53] M. Rochan and Y. Wang. Video summarization by learning from unpaired data. In 2019
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[54] M. Rochan, L. Ye, and Y. Wang. Video summarization using fully convolutional sequence
networks. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer
Vision – ECCV 2018, pages 358–374, Cham, 2018. Springer International Publishing.

[55] Y. Song, J. Vallmitjana, A. Stent, and A. Jaimes. Tvsum: Summarizing web videos using
titles. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5179–5187, June 2015.

[56] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1–9, June 2015.

[57] B. T. Truong and S. Venkatesh. Video abstraction: A systematic review and classification.
ACM Trans. Multimedia Comput. Commun. Appl., 3(1), Feb. 2007.

[58] K. Wang, R. He, W. Wang, L. Wang, and T. Tan. Learning coupled feature spaces for
cross-modal matching. In 2013 IEEE International Conference on Computer Vision, pages
2088–2095, Dec 2013.

[59] T. Wang, T. Mei, X. Hua, X. Liu, and H. Zhou. Video collage: A novel presentation of
video sequence. In 2007 IEEE International Conference on Multimedia and Expo, pages
1479–1482, July 2007.

Page 52 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

[60] H. Wei, B. Ni, Y. Yan, H. Yu, X. Yang, and C. Yao. Video summarization via semantic
attended networks. In 2018 AAAI Conference on Artificial Intelligence (AAAI), 2018.

[61] J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video description dataset for bridging
video and language. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[62] E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and efficient sampling method for
estimating ap and ndcg. In 31st ACM SIGIR Int. Conf. on Research and Development in
Information Retrieval, pages 603–610, USA, 2008. ACM.

[63] L. Yuan, F. E. H. Tay, P. Li, L. Zhou, and J. Feng. Cycle-SUM: Cycle-Consistent Adver-
sarial LSTM Networks for Unsupervised Video Summarization. In 2019 AAAI Conference
on Artificial Intelligence (AAAI), 2019.

[64] Y. Yuan, T. Mei, P. Cui, and W. Zhu. Video summarization by learning deep side
semantic embedding. IEEE Transactions on Circuits and Systems for Video Technology,
29(1):226–237, Jan 2019.

[65] H. Zhang, J. Wu, D. Zhong, and S. W. Smoliar. An integrated system for content-based
video retrieval and browsing. Pattern Recognition, 30:643–658, 1997.

[66] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Video summarization with long short-
term memory. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision
– ECCV 2016, pages 766–782, Cham, 2016. Springer International Publishing.

[67] K. Zhang, K. Grauman, and F. Sha. Retrospective encoders for video summarization. In
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision – ECCV
2018, pages 391–408, Cham, 2018. Springer International Publishing.

[68] X.-D. Zhang, T.-Y. Liu, K.-T. Lo, and J. Feng. Dynamic selection and effective com-
pression of key frames for video abstraction. Pattern Recogn. Lett., 24(9-10):1523–1532,
June 2003.

[69] Y. Zhang, M. Kampffmeyer, X. Liang, D. Zhang, M. Tan, and E. P. Xing. Dtr-gan: Dilated
temporal relational adversarial network for video summarization. CoRR, abs/1804.11228,
2018.

[70] Y. Zhang, X. Liang, D. Zhang, M. Tan, and E. P. Xing. Unsupervised object-level video
summarization with online motion auto-encoder. Pattern Recognition Letters, 2018.

[71] Y. Zhang, R. Tao, and Y. Wang. Motion-state-adaptive video summarization via spa-
tiotemporal analysis. IEEE Transactions on Circuits and Systems for Video Technology,
27(6):1340–1352, June 2017.

[72] B. Zhao, X. Li, and X. Lu. Hierarchical recurrent neural network for video summarization.
In Proceedings of the 2017 ACM on Multimedia Conference, MM ’17, pages 863–871,
New York, NY, USA, 2017. ACM.

[73] B. Zhao, X. Li, and X. Lu. Hsa-rnn: Hierarchical structure-adaptive rnn for video summa-
rization. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’18, 2018.

[74] B. Zhao and E. P. Xing. Quasi real-time summarization for consumer videos. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 2513–2520, June
2014.

Page 53 of 54

D3.2 Content Adaptation, Re-purposing and Scheduling

[75] K. Zhou and Y. Qiao. Deep reinforcement learning for unsupervised video summarization
with diversity-representativeness reward. In 2018 AAAI Conference on Artificial Intelli-
gence (AAAI), 2018.

[76] K. Zhou, T. Xiang, and A. Cavallaro. Video summarisation by classification with deep
reinforcement learning. In 2018 British Machine Vision Conference (BMVC), 2018.

Page 54 of 54

	Introduction
	Metadata and Vocabulary Interoperability
	Viewer Profiling
	Data
	The Modelling Approach
	Results and Discussion

	Content Adaptation and Re-Purposing
	Problem Statement
	State-of-the-Art Survey
	Video Summarization
	Text to Video Matching

	Non-learning-based Video Summarization Approach
	Learning-based Video Summarization Approaches
	Unsupervised Video Summarization Using Stepwise, Label-based Generative Adversarial Learning
	Unsupervised Video Summarization Using Attention-driven Generative Adversarial Learning

	Text to Video Matching
	Results
	Video Summarization
	Experimental Setting
	Preliminary Study on Datasets
	Evaluation Outcomes

	Text to Video Matching
	Experimental Setting
	Evaluation Outcomes

	Video Summarization Component, Workflow and API
	Start Call
	Render Call
	Status Call
	Results Calls
	Component Testing and Software Quality Assessment

	Content Recommendation and Scheduling
	Content Recommendation Service Overview
	Content Scheduling Service Overview
	Audience Profiling for the Content Recommendation
	Future Work and Conclusions

	Conclusion and Outlook

